INFINEON PMB2306

ICs for Communications
PLL-Frequency Synthesizer
PMB2306R/PMB2306T Version 2.2
Data Sheet 02.97
T2306-0V22-D1-7600
30%530%7
5HYLVLRQ+LVWRU\
&XUUHQW9HUVLRQ
Previous Version: 01.94
Page
Page
(in previous (in new
Version)
Version)
Subjects (major changes since last revision)
14-15
19-20
$&'&&KDUDFWHULVWLFV
H-input current ,H: is changed from 10µA to 30µA and
L-input current ,L: is changed from -10µA to -30µA
26
26
&ORFNIUHTXHQF\ ICL max. is changed from 10MHz to 12MHz;
+SXOVHZLGWK&/ WWHCL min. is changed from 60ns to 40ns;
+SXOVHZLGWKHQDEOH WWHENmin. is changed from 60ns to 40ns;
18
18
Input reference frequency ICRI is changed from 20MHz to 22MHz
19
19
,QSXW6LJQDO5,
Input voltage 9I: is changed from 20MHz to 22MHz
(GLWLRQ
This edition was realized using the software system FrameMaker.
3XEOLVKHGE\ 6LHPHQV$*
+/,7
‹6LHPHQV$*
$OO5LJKWV5HVHUYHG
$WWHQWLRQSOHDVH
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for
applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or
the Siemens Companies and Representatives worldwide (see address list).
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Siemens Office, Semiconductor Group.
Siemens AG is an approved CECC manufacturer.
3DFNLQJ
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice
you for any costs incurred.
&RPSRQHQWVXVHGLQOLIHVXSSRUWGHYLFHVRUV\VWHPVPXVWEHH[SUHVVO\DXWKRUL]HGIRUVXFKSXUSRVH
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or
systems2 with the express written approval of the Semiconductor Group of Siemens AG.
30%530%7
7DEOHRI&RQWHQWV
3DJH
1.1
1.2
1.3
1.4
2YHUYLHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
&LUFXLW'HVFULSWLRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.1
3.2
3.3
(OHFWULFDO&KDUDFWHULVWLFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Typical Supply Current ,DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.1
4.2
3DFNDJH2XWOLQHV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Plastic-Package, P-TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Plastic-Package, P-DSO-14-1(SMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Semiconductor Group
3
02.97
3//)UHTXHQF\6\QWKHVL]HU
30%530%7
9HUVLRQ
2YHUYLHZ
)HDWXUHV
%LSRODU,&
30%7
• Low operating current consumption
(typically 3.5 mA)
• High input sensitivity, high input frequencies
(220 MHz)
• Extremely fast phase detector without dead zone
3'62
• Linearization of the phase detector output by current
sources
30%5
• Synchronous programming of the counters
(n-, n/a-, r-counters) and system parameters
• Fast modulus switchover for 65-MHz operation
• Switchable modulus trigger edge
• Large dividing ratios for small channel spacing
A scaler 0 to 127
376623
N scaler 3 to 16.380
R scaler 3 to 65.535
• Serial control (3-wire bus: data, clock, enable) for fast programming (Imax ~ 10 MHz)
• Switchable polarity and phase detector current programmable
• 2 Multifunction outputs
• Digital phase detector output signals (e.g. for external charge pump)
• Irn, Ivn outputs of the R and N scalers
• Port 1 output (e.g. for standby of the prescaler)
• External current setting for PD output
• Lock detect output with gated anti-backlash pulse (quasi digital lock detect)
7\SH
9HUVLRQ
2UGHULQJ&RGH
3DFNDJH
PMB 2306T
V2.2
Q67100-H6423
P-DSO-14 (SMD)
PMB 2306T
V2.2
Q67106-H6423
P-DSO-14 (SMD, Tape & Reel)
PMB 2306R
V2.2
Q-67106-H6514 (T&R)
P-TSSOP-16 (SMD, T&R)
The PMB 2306T PLL is a high speed CMOS IC, especially designed for use in battery powered
radio equipment and mobile telephones. The primary applications will be in digital systems e.g.
GSM, PCN, ADC, JDC and DECT systems. The wide range of dividing ratios also allows application
in modern analog systems
Semiconductor Group
4
02.97
30%530%7
2YHUYLHZ
3LQ&RQILJXUDWLRQ
(top view)
3'62
RI
LD
VSS
MFO2
EN
MFO1
DA
VDD1
CLK
PD
VDD
VSS1
MOD
FI
NC
NC
376623
Semiconductor Group
5
02.97
30%530%7
2YHUYLHZ
3LQ'HILQLWLRQVDQG)XQFWLRQV
7DEOH
'62 76623 6\PERO )XQFWLRQ
6
6
9DD
Positive supply voltage for serial control logic.
2
2
9SS
Ground for serial control logic.
11
13
9DD1
Positive supply voltage for the preamplifiers, counters, phase
detector and charge pump.
9
11
9SS1
Ground for the preamplifiers, counters, phase detector and
charge pump.
(1RWH7KHSLQV9''DQG9''UHVSHFWLYHO\966DQG966
KDYHWRKDYHWKHVDPHVXSSO\YROWDJH.)
3
3
EN
/LQH%XV(QDEOH
Enable line of the serial control with internal pull-up resistor.
When EN = H the input signals CLK and DA are disabled
internally. When EN = L the serial control is activated. The
received data are transferred into the latches with the positive
edge of the EN-signal.
4
4
DA
/LQH%XV'DWD
Serial data input with internal pull-up resistor. The last two bits
before the EN-signal define the destination address. In a byteoriented data structure the transmitted data have to end with
the EN-signal, i.e. bits to be filled in (don’t care) are transmitted
first.
5
5
CLK
/LQH%XV&ORFN
Clock line with internal pull-up resistor. The serial data are read
into the internal shift register with the positive edge (see pulse
diagram for serial data control).
7
7
MOD
0RGXOXV&RQWURO2XWSXW for external dual modulus prescaler.
The modulus output is low at the beginning of the cycle. When
the a-counter has reached its set value, MOD switches to high.
When the n-counter has reached its set value, MOD switches to
low again, and the cycle starts from the top. When the prescaler
has the counter factor P or P + 1 (P for MOD = H, P + 1 for MOD
= L), the overall scaling factor is NP + A. The value of the acounter must be smaller than that of the n-counter. The trigger
edge of the modulus signal to the input signal can be selected
(see programming tables and MOD
A, B) according to the needs of the prescaler. In single modulus
operation and for standby operation in dual modulus operation,
the output is low.
Semiconductor Group
6
02.97
30%530%7
2YHUYLHZ
7DEOH
'62 76623 6\PERO )XQFWLRQ
8
10
FI
9&2)UHTXHQF\
Input with highly sensitive preamplifier for 14-bit n-counter and
7-bit a-counter. With small input signals AC coupling must be
set up, where DC coupling can be used for large input signals.
1
1
RI
5HIHUHQFH)UHTXHQF\
Input with highly sensitive preamplifier for 16-bit r-counter. With
small input signals AC coupling must be set up, where DC
coupling can be used for large input signals.
10
12
PD
3KDVH'HWHFWRU
Tristate charge pump output. The integrated, positive and
negative current sources can be programmed with respect to
their current density by means of the serial control. Activation
and deactivation depend on the phase relationship of the
scaled-down input signals FI:N, RI:R. (See phase detector
output waveforms.)
frequency IV <IR orIV lagging:
p-channel current source
active
frequency IV > IR orIR leading:
n-channel current source
active
frequency IV = IR and PLL locked: current sources are
switched off, PD-output is tristate
In standby mode the PD-output is set to tristate. The
assignment of the current sources to the output signals of the
phase detector can be swapped in it’s polarity, i.e. the sign of
the phase detector constant can be controlled.
14
16
LD
/RFN'HWHFWRU2XWSXW (open drain). Unipolar output of the
phase detector in the form of a pulse-width modulated signal.
The L-pulse width corresponds to the phase difference. Phase
differences < 20 ns are not indicated due to gating of the
antibacklash impuls. In the locked state the LD-signal is at
H-level. In standby mode the output is resistive.
Only for ABL status 11 no gating of ABL impulse is performed.
Semiconductor Group
7
02.97
30%530%7
2YHUYLHZ
7DEOH
'62 76623 6\PERO )XQFWLRQ
12
14
MFO1
0XOWLIXQFWLRQ2XWSXW for the signalsIRN, ΦV, ΦVN and port 1.
13
15
MFO2
0XOWLIXQFWLRQ,23LQ for the output signals IVN, ΦRN and the
input signal ,REF.
– The signals ΦR and ΦV are the digital output signals of the
phase and frequency detector for use in external active
current sources (see phase detector output wave forms).
– The signals IRN and IVN are the scaled down signals of the
reference frequency and VCO-frequency. The L-time
corresponds to 1/IRI and 1/IFI respectively.
– In the port function the port 1 output signal is assigned to the
information of the status program. The output switches with
the rising edge of the
EN-signal. The standby mode does not affect the port
function.
– In the internal charge pump mode the input signal ,REF
determines the value of the PD-output current.
Reference current for charge pump:
,REF = (9DD – 9REF)/R1
= 100µA (tolerance of ±20% or less is recommended)
R1:see application circuit
9REF:see AC/DC characteristics
Semiconductor Group
8
02.97
30%530%7
2YHUYLHZ
)XQFWLRQDO%ORFN'LDJUDP
Semiconductor Group
9
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
&LUFXLW'HVFULSWLRQ
*HQHUDO'HVFULSWLRQ
The circuit consists of a reference-, a- and n-counter, a dual modulus control logic, a
phase detector with charge pump output and a serial control logic. The setting of the
operating mode and the selection of the counter ratios is done serially at the ports CLK,
DA and EN.
The operating modes allow the selection of single or dual operation, asynchronous or
synchronous data acquisition, 4 different antibacklash-impulse times, 8 different PDoutput current modes, polarity setting of the PD-output signal, adjustment of the triggeredge of the MOD-output signal, 2 standby modes and the control of the multifunction
outputs MFO1 and MFO2.
The reference frequency is applied at the RI-input and scaled down by the r-counter. It’s
maximum value is 100 MHz. The VCO-frequency is applied at the FI-input and scaled
down by the n- or n/a-counter according to single or dual mode operation. The maximum
value at FI is 220 MHz at single-, and 65 MHz at dual mode operation.
The phase and frequency sensitive phase detector produces an output signal with
adjustable anti-backlash impulses in order to prevent a dead zone for very small phase
deviations. Phase differences of less than 100 ps can be resolved. In general the
shortest anti-backlash pulse gives the best system performance.
3URJUDPPLQJ
Programming of the IC is done by a serial data control. The contents of the message are
assigned to the functional units according to the address. 6LQJOH RU GXDO PRGH
RSHUDWLRQ DV ZHOO DV DV\QFKURQRXV RU V\QFKURQRXV GDWD DFTXLVLWLRQ LV VHW E\
VWDWXVDQGVKRXOGWKHUHIRUHSUHFHGHWKHSURJUDPPLQJRIWKHFRXQWHUV
'DWDDFTXLVLWLRQ
The PMB 2306T offers the possibility of synchronous data acquisition to avoid error
signals at the phase detector due to non-corresponding dividing factors in the counters
produced by asynchronous loading.
Synchronous programming guarantees control during changes of frequency or channel.
That means that the state of the phase detector or the phase difference is kept
maintained, and in case of “lock in”, the control process starts with the phase difference
“zero”.
Semiconductor Group
10
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
This is done as follows:
1.Setting of synchronous data acquisition by status 2.
2.Programming of the r-counter, status 1 (optional)-data is being loaded into shadow
registers.
3.Programming of the n- or n/a-counter-data is being loaded into shadow registers, the
EN-signal starts the synchronous loading procedure.
4.Synchronous programming – which means data transfer of all data from the shadow
registers to the data registers – takes place at that point in time when the respective
counter reaches “zero + 1”, the maximum repetition rate for channel change is
therefore IFI:N.
5.Transfer of status 1 information into the corresponding data register is tied to the ncounter loading, but follows the loading of the n-data register in the distance of one ncounter dividing ratio, this guarantees that for example a new PD-current value
becomes valid at the same time when the counters are loaded with the new data.
Synchronous avoids additional phase error caused by programming. Synchronous data
acquisition is of especial advantage, when large steps in frequency are to be made in a
short time. For this purpose a high reference frequency can be programmed in order to
achieve rapid – “rough” – transient response. This method increases the fundamental
frequency nearly by the square route of the reference frequency relation. When rough
lock is achieved, another synchronous data transfer is needed to switch back to the
original channel spacing. A “fine” lock in will finish the total step response. It may not be
necessary to change reference frequency, but it make sense to perform synchronous
data acquisition in any case. Especially for GSM, PCN, DECT, DAMPS, JDC, PHP
systems the synchronous mode should be used to get best performance of the PMB
2306T.
6WDQGE\&RQGLWLRQ
The PMB 2306T has two standby modes (standby 1, 2) to reduce the current
consumption.
Standby 1 switches off the whole circuit, the current consumption is reduced below 1 µA.
Standby 2 switches off the counters, the charge pump and the outputs, only the
preamplifiers stay active.
The standby modes do not affect the port output signal. For the influence on the other
output signals VHHVWDQGE\WDEOH
1RWH I51I91 Φ51 DQGΦ91DUHWKHLQYHUWHGVLJQDOVRII5I9Φ5DQGΦ9
Semiconductor Group
11
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
3URJUDPPLQJ7DEOHV
6WDWXV%LWV
0XOWLIXQFWLRQ2XWSXWV
0RGH
0RGH
0)2
0)2
5HPDUNV
0
0
IRN
IVN
test mode
0
1
ΦV
ΦRN
external charge pump mode 1
1
0
ΦVN
ΦRN
external charge pump mode 2
1
1
Port 1
,REF
internal charge pump mode
6WDWXV%LWV
3'&XUUHQW0RGH
3'&XUUHQW
3'&XUUHQW
3'&XUUHQW
0
0
0
0.175
0
0
1
0.25
0
1
0
0.35
0
1
1
0.5
1
0
0
0.7
1
0
1
1
1
1
0
1.4
1
1
1
2
3URJUDPPLQJ7DEOHV(cont’d)
6WDWXV%LWV
$QWL%DFNODVK
3XOVH:LGWK
$QWL%DFNODVK
3XOVH:LGWK
WZW\S
>QV@
$SSOLFDWLRQ
0
0
1.3*
9DD = 5 V
0
1
5
1
0
10
not recommended
1
1
13**
any application where
continuous lock detect required
* In general the shortest anti-backlash pulse gives the best system performance.
** No ABL (Anti-Backlash-Pulse) gating performed. This means, that at the LD output the anti-backlash pulse
will appear. In the other cases the anti-backlash pulse will be surpressed at the LD output.
Semiconductor Group
12
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
6WDWXV%LWV
3UHDPSOLILHU)XQFWLRQ0RGH
6LQJOH'XDO
0RGH
3UHDPSOLILHU
6HOHFW
0
0
FI-input frequency, single HF-mode
0
1
FI-input frequency, single LF-mode
1
0
FI-input frequency, dual mode, FI-trigger edge LH, MOD A
1
1
FI-input frequency, dual mode, FI-trigger edge HL, MOD B
6WDQGE\7DEOH
2XWSXW3LQV
6WDWXV
0)2
0)2
/'
3'
02'
Φ9
Φ91
Standby 1
low
high
high
resistive
tristate
low
Standby 2
low
high
high
resistive
tristate
low
Semiconductor Group
13
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
6HULDO&RQWURO'DWD)RUPDWVWDWXV
6WDWXV
6WDWXV
0
1
Data acquisition mode
1
asynchronous synchronous
Mode 1
2
see table
Mode 2
3
PD-polarity
4
negative
positive
Standby 1
5
standby
active
Standby 2
6
standby
active
Anti-backlash pulse width 1
7
see table
Anti-backlash pulse width 2
8
see table
Preamplifier select
9
see table
Single / dual mode
10
single
dual
1
Port 1
11
low
high
2
PD-current 1
12
see table
3
PD-current 2
13
see table
4
PD-current 3
14
see table
5
0
6
0
Address
0
15
1
16
EN
see table
EN
6LQJOHRUGXDOPRGHRSHUDWLRQDVZHOODVDV\QFKURQRXVRUV\QFKURQRXVGDWD
DFTXLVLWLRQLVVHWE\VWDWXVDQGVKRXOGWKHUHIRUHSUHFHGHWKHSURJUDPPLQJRI
WKHFRXQWHUVVHHDOVRSDJH
Semiconductor Group
14
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
6HULDO&RQWURO'DWD)RUPDWQQDFRXQWHU
'XDO0RGH
6LQJOH0RGH
MSB
1
2
3
a-Counter
4
5
6
7
LSB
8
MSB
MSB
1
9
2
10
3
11
4
12
5
13
6
14
7
n-Counter
15
8
16
9
17
10
18
11
19
12
20
13
LSB
21
22
1
23
0
LSB
Address
EN
Semiconductor Group
14
1
15
0
16
EN
15
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
6HULDO&RQWURO'DWD)RUPDWUFRXQWHU
1
MSB
2
3
4
5
6
7
8
r-Counter
9
10
11
12
13
14
15
LSB
16
17
1
18
1
Address
EN
Semiconductor Group
16
02.97
30%530%7
&LUFXLW'HVFULSWLRQ
3KDVH'HWHFWRUQ2XWSXW:DYHIRUPV
Semiconductor Group
17
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
(OHFWULFDO&KDUDFWHULVWLFV
$EVROXWH0D[LPXP5DWLQJV
7A = – 40 to 85 °C
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
PD[
8QLW 5HPDUNV
Supply voltage
9DD
– 0.3
6
V
Input voltage
9I
– 0.3
9DD + 0.3
V
Output voltage
9Q
GND
9DD
V
Power dissipation per output
3Q
10
mW
Total power dissipation
3tot
300
mW
Ambient temperature
7A
– 40
85
°C
Storage temperature
7stg
– 50
125
°C
Supply voltage
9DD
3.0
5.5
V
Input frequency dual mode
Input frequency single HF-mode
Input frequency single LF-mode
Input reference frequency
Input frequency dual mode
Input frequency single HF-mode
Input frequency single LF-mode
Input reference frequency
IFI
IFI
IFI
IRI
IFI
IFI
IFI
IRI
0.1
0.1
0.1
65
220
90
100
30
120
35
22
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
9DD = 4.5 … 5.5 V
9DD = 4.5 … 5.5 V
9DD = 4.5 … 5.5 V
9DD = 4.5 … 5.5 V
9DD = 3.3 V
9DD = 3.3 V
9DD = 3.3 V
9DD = 3.3 V
PD-output current
PD-output voltage
PD-output voltage
/ ,PD /
9PD
9PD
4
0.5
0.5
9DD – 0.5
9DD – 0.5
mA
V
V
9DD = 4.5 – 5.5 V
9DD = 3.3 V
Ambient temperature
7A
– 40
85
°C
in operation
2SHUDWLQJ5DQJH
0.1
0.1
0.1
All pins are protected against ESD. Unused inputs without pullup resistors must be connected to either 9DD or 9SS.
7\SLFDO6XSSO\&XUUHQW,''
Supply voltage
9DD
3.3
5
5.5
V
Supply current
singlemode HF
dual mode
standby 2
standby 1
,DD
,DD
,DD
,DD
1.63
1.76
0.11
2.6
2.80
0.62
2.94
3.17
0.75
1
mA
mA
mA
µA
Semiconductor Group
18
Test conditions:
IFI = 50 MHz, 9FI = 150 mVrms
IRI = 10 MHz, 9RI = 150 mVrms
,PD = 0.25 mA, ,ref = 100 µA
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
$&'&&KDUDFWHULVWLFV
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
8QLW
7HVW&RQGLWLRQ
W\S PD[
,QSXW6LJQDOV'$&/.(1ZLWKLQWHUQDOSXOOXSUHVLVWRUV
H-input voltage
L-input voltage
Input capacity
H-input current
L-input current
9IH
9IL
&I
,H
,L
0.7 9DD
0
9DD
0.3 9DD
5
10
– 300
V
V
pF
µA
µA
9I = 9DD = 5.5 V
9I = GND
Further information about timing see at page 25 and 26
,QSXW6LJQDO5,
Input voltage
9I
100
Input voltage
Slew rate
Input capacity
H-input current
L-input current
9I
100
2.5
&I
,H
,L
3
30
– 30
mVrms I = 4 … 100 MHz,
9DD =4.5 V
mVrms I = 4 … 22 MHz, 9DD = 3.3 V
9DD = 3.3 … 5.5 V
V/µs
pF
µA
9I = 9DD = 5.5 V
µA
9I = GND
,QSXW6LJQDO),GXDOPRGH
Input voltage
Input voltage
Input voltage
Slew rate
Input capacity
H-input current
L-input current
9I
9I
9I
&I
,H
,L
180
180
50
4
3
30
– 30
mVrms
mVrms
mVrms
V/µs
pF
µA
µA
I = 4 … 65 MHz, 9DD = 4.5 V
I = 4 … 30 MHz, 9DD = 3.3 V
I = 10 … 30 MHz, 9DD = 3.3 V
9DD = 3.3 … 5.5 V
mVrms
mVrms
mVrms
V/µs
pF
µA
µA
I = 4 … 220 MHz, 9DD = 4.5 V
I = 4 … 120 MHz, 9DD = 3.3 V
I = 10 … 50 MHz, 9DD = 4.5 V
9DD = 3.3 … 5.5 V
9I = 9DD = 5.5 V
9I = GND
,QSXW6LJQDO),VLQJOH+)PRGH
Input voltage
Input voltage
Input voltage
Slew rate
Input capacity
H-input current
L-input current
9I
9I
9I
&I
,H
,L
Semiconductor Group
200
20
50
2.5
3
30
– 30
19
9I = 9DD = 5.5 V
9I = GND
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
8QLW
7HVW&RQGLWLRQ
mVrms
mVrms
V/µs
pF
µA
µA
I = 4 … 90 MHz, 9DD = 4.5 V
I = 4 … 35 MHz, 9DD = 3.3 V
9DD = 3.3 … 5.5 V
W\S PD[
,QSXW6LJQDO),VLQJOH/)PRGH
Input voltage
Input voltage
Slew rate
Input capacity
H-input current
L-input current
9I
9I
&I
,H
,L
100
100
2.5
3
30
– 30
9I = 9DD = 5.5 V
9I = GND
2XWSXW&XUUHQW,3'
Current mode
“0.175 mA”
“0.25 mA”
“0.35 mA”
“0.5 mA”
“0.7 mA”
“1.0 mA”
“1.4 mA”
“2.0 mA”
“Standby”
* guaranteed by
design
,PROG
,PROG
,PROG
,PROG
,PROG
,PROG
,PROG
,PROG
/ ,PD /
– 20 %
– 20 %
– 20 %
– 20 %
– 20 %
– 10 %
– 10 %
– 10 %
0.1*
+ 20 %
+ 20 %
+ 20 %
+ 20 %
+ 20 %
+ 10 %
+ 10 %
+ 10 %
50
mA
mA
mA
mA
mA
mA
mA
mA
nA
9DD = 4.5 … 5.5 V
9PD = 9DD/2
,REF = 100 µA
9DD = 5.5 V
2XWSXW7ROHUDQFHV,3'
∆ ,PD / ,PROG
– 20 %
∆ ,PD / ,PROG
9PD = 9DD/2, 9DD = 3.3 V
+3%
9PD = 1 … 4 V, 9DD = 5 V
±4%
,QSXW9ROWDJH0)2LQWHUQDOFKDUJHSXPSPRGH
Reference voltage
9REF
Semiconductor Group
0.9
1.1
1.3
20
V
9DD = 4.5 … 5.5 V,
,REF = 100 µA
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
8QLW
7HVW&RQGLWLRQ
V
9DD = 4.5 … 5.5 V,
,QH = 2 mA
9DD = 4.5 … 5.5 V, ,QL = 2 mA
9DD = 3.3 V, ,QH = 1.2 mA
9DD = 3.3 V, ,QL = 1.2 mA
9DD = 4.5 … 5.5 V, &I = 10 pF
9DD = 4.5 … 5.5 V, &I = 10 pF
9DD = 3.3 V, &I = 10 pF
9DD = 3.3 V, &I = 10 pF
W\S PD[
2XWSXW6LJQDO0)2SXVKSXOO
H-output voltage
9QH
L-output voltage
H-output voltage
L-output voltage
Rise time
Fall time
Rise time
Fall time
9QL
9QH
9QL
WR
WF
WR
WF
9DD – 1
1
9DD – 1
2.5
2.0
4.0
2.5
1
10
10
10
10
V
V
V
ns
ns
ns
ns
2XWSXW6LJQDO0)2SXVKSXOO
H-output voltage
9QH
L-output voltage
H-output voltage
L-output voltage
Rise time
Fall time
Rise time
Fall time
9QL
9QH
9QL
WR
WF
WR
WF
9DD – 1
V
1
9DD – 1
2
2
3
3
1
10
10
10
10
V
V
V
ns
ns
ns
ns
0.4
V
0.4
10
10
V
ns
ns
9DD = 4.5 … 5.5 V,
,QH = 2 mA
9DD = 4.5 … 5.5 V, ,QL = 2 mA
9DD = 3.3 V, ,QH = 1.2 mA
9DD = 3.3 V, ,QL = 1.2 mA
9DD = 4.5 … 5.5 V, &I = 10 pF
9DD = 4.5 … 5.5 V, &I = 10 pF
9DD = 3.3 V, &I = 10 pF
9DD = 3.3 V, &I = 10 pF
2XWSXW6LJQDO/'QFKDQQHORSHQGUDLQ
L-output voltage
9QL
L-output voltage
Fall time
Fall time
9QL
WF
WF
Semiconductor Group
3
4.5
21
9DD = 4.5 … 5.5 V,
,QL = 0.5 mA
9DD = 3.3 V, ,QL = 0.5 mA
9DD = 4.5 … 5.5 V, &I = 10 pF
9DD = 3.3 V, &I = 10 pF
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
8QLW
7HVW&RQGLWLRQ
V
V
9DD = 4.5 … 5.5 V,
,QH = 0.5 mA
9DD = 4.5 … 5.5 V,
,QL = 0.5 mA
9DD = 3.3 V, ,QH = 0.3 mA
V
ns
ns
ns
9DD = 3.3 V, ,QL = 0.3 mA
9DD = 4.5 … 5.5 V, &I = 5 pF
9DD = 4.5 … 5.5 V, &I = 5 pF
9DD = 4.5 … 5.5 V, &I = 5 pF
W\S PD[
2XWSXW6LJQDO02'SXVKSXOO
H-output voltage
9QH
L-output voltage
9QL
H-output voltage
9QH
9DD
– 0.4
0.4
9DD
V
– 0.4
L-output voltage
Rise time
Fall time
Propagation delay
time H-L to FI
Propagation delay
time L-H to FI
Rise time
Fall time
Propagation delay
time H-L to FI
Propagation delay
time L-H to FI
9QL
WR
WF
WDQHL
1.5
1.3
8
0.4
3
3
12
WDQLH
8
12
ns
9DD = 4.5 … 5.5 V, &I = 5 pF
WR
WF
WDQHL
2.8
1.6
12
4
4
ns
ns
ns
9DD = 3.3 V, &I = 5 pF
9DD = 3.3 V, &I = 5 pF
9DD = 3.3 V, &I = 5 pF
WDQLH
12
ns
9DD = 3.3 V, &I = 5 pF
Semiconductor Group
22
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
(TXLYDOHQW,26FKHPDWLFV
Semiconductor Group
23
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
(TXLYDOHQW,26FKHPDWLFV (cont’d)
500kΩ
Semiconductor Group
24
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
3XOVH'LDJUDP
Semiconductor Group
25
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
6HULDO&RQWURO'DWD,QSXW7LPLQJ
3DUDPHWHU
6\PERO
/LPLW9DOXHV
PLQ
8QLW
7HVW&RQGLWLRQ
MHz
9DD=3.3V
PD[
Clock frequency
ICL
H-pulsewidth (CL)
WWHCL
40
ns
Data setup
WDS
20
ns
Setup time clock-enable
WCLE
20
ns
Setup time enable-clock
WECL
20
ns
H-pulsewidth (enable)
WWHEN
40
ns
Rise, fall time
WRWF
10
µs
Propagation delay time EN-PORT
WDEP
1
µs
Semiconductor Group
12
26
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
,QSXW6HQVLWLYLW\6LJQDO),VLQJOH+)PRGH
Semiconductor Group
27
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
T
4
*60$SSOLFDWLRQ&LUFXLW
Semiconductor Group
28
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
/LVWRI&RPSRQHQWV
,WHP
4XDQWLW\5HIHUHQFH
1
2
3
4
5
6
7
8
9
10
1
2
1
1
1
1
4
1
1
1
11
12
13
14
15
1
1
1
6
57
513, 514
56
58
510
512
59, 53, 55, 511
54
52
52
3DUW
100 Ω
150 Ω
220 Ω
330 Ω
3.3 kΩ
6.8 kΩ
8.2 kΩ
18 kΩ
22 kΩ
39 kΩ
SMD/0805 B54102-A1101-K60
SMD/0805 B54102-A1151-J60
SMD/0805 B54102-A1221-J60
SMD/0805 B54102-A1331-J60
SMD/0805 B54102-A1332-J60
SMD/0805 B54102-A1682-J60
SMD/0805 B54102-A1822-J60
SMD/0805 B54102-A1183-J60
SMD/0805 B54102-A1223-J60
SMD/0805 B54102-A1393-J60
S+M
S+M
S+M
S+M
S+M
S+M
S+M
S+M
S+M
S+M
1 /1
22 nH
SIMID 01 B82412-A3220-M
S+M
1.2 pF
2.2 pF
10 pF
COG/0805 B37940-K5010-C262
COG/0805 B37940-K5020-C262
COG/0805 B37940-K5100-J62
S+M
S+M
S+M
16
17
18
19
20
21
22
&11
&13
&8
&20, &10, &12,
&14, &15, &16
3 &17, &1, &2
1 &9
1 &3
1 &5
1 &7
1 &6
1 &19
22 pF
33 pF
100 pF
330 pF
560 pF
5.6 nF
100 nF
22 µF
COG/0805 B37940-K5220-J62
COG/0805 B37940-K5330-J62
COG/0805 B37940-K5101-J62
COG/0805 B37940-K5331-J62
COG/0805 B37940-K5561-J62
COG/1210 B37949-K5562-J62
X7R/1210 B37950-K5104-K62
B45196-E3226-+409
S+M
S+M
S+M
S+M
S+M
S+M
S+M
S+M
23
24
25
1 D1
2 T3, T2
1 T1
BBY 51
BFR 280
BFT 92
26
27
28
29
1
2
1
1
30
1 IC2
&4
X2, X1
RX
IC1
Semiconductor Group
Q62702-B631
Q62702-F1298
Q62702-F1062
1,0 nF
COG/1210 B37949-K5102-J62
SMA
Connector
1.3 GHz
B69610-G1307-A412
PMB 2306T P-DSO-14
Q67100-H6423
PMB 2306T P-DSO-14
Q67106-H6423(T+R)
PMB 2314 P-DSO-8
Q67000-A6121
PMB 2314 P-DSO-8
Q67006-A6121(T+R)
29
SIEMENS
SIEMENS
SIEMENS
S+M
S+M
SIEMENS
SIEMENS
SIEMENS
SIEMENS
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
3KDVH1RLVH&ORVHWRWKH&DUULHU
Semiconductor Group
30
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
6SHFWUXPDW/RZHU(QGRI*607;%RDUG0RELOH
Semiconductor Group
31
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
/RFN,Q7LPHIRU*60$SSOLFDWLRQ
Semiconductor Group
32
02.97
30%530%7
(OHFWULFDO&KDUDFWHULVWLFV
0HDVXUHPHQW6HW8SIRU/RFN,Q7LPH
Semiconductor Group
33
02.97
30%530%7
3DFNDJH2XWOLQHV
3DFNDJH2XWOLQHV
3ODVWLF3DFNDJH376623
Semiconductor Group
34
02.97
30%530%7
3DFNDJH2XWOLQHV
3ODVWLF3DFNDJH3'6260'
GPM05247
6RUWVRI3DFNLQJ
Package outlines for tubes, trays etc. are contained in our
Data Book “Package Information”.
SMD = Surface Mounted Device
Semiconductor Group
35
Dimensions in mm
02.97