PDF Data Sheet Rev. A

Low Noise, 2:8 Differential
Fanout Buffer
HMC6832
Data Sheet
FEATURES
GENERAL DESCRIPTION
Ultralow noise floor: −165.9 dBc/Hz or −165.2 dBc/Hz
(LVPECL or LVDS) at 2000 MHz
Configurable to LVPECL or pseudo LVDS outputs
2.5 V or 3.3 V LVPECL operation (LVDS 2.5 V only)
Wideband: 10 MHz to 3500 MHz operating frequency range
Flexible input interface
LVPECL, LVDS, CML, and CMOS compatible
AC or dc coupling
On-chip termination high impedance with 50 kΩ shunts to
VDD and GND
Multiple output drivers
Up to 8 differential or 16 single-ended LVPECL or LVDS
outputs
Low speed digital control via the IN_SEL and CONFIG pins
28-lead, 5 mm × 5 mm, LFCSP package, 25 mm2
The HMC6832 is an input selectable, 2:8 differential fanout
buffer designed for low noise clock distribution. The low jitter
outputs of the HMC6832 lead to synchronized low noise
switching of downstream circuits, such as mixers, analog-todigital converters (ADCs)/digital-to-analog converters (DACs),
or serializer/deserializer (SERDES) devices. The device is capable
of low voltage, positive emitter-coupled logic (LVPECL) or low
voltage differential signaling (LVDS) configurations by pulling
the CONFIG pin low for LVPECL or high or open (internally
pulled high) for pseudo LVDS.
APPLICATIONS
SONET, Fibre Channel, GigE clock distribution
ADC/DAC clock distribution
Low skew and jitter clocks
Wireless/wired communications
Level translation
High performance instrumentation
Medical imaging
Single-ended to differential conversions
Rev. A
PRODUCT HIGHLIGHTS
1.
2.
3.
4.
5.
Multiple Output Configurations.
The CONFIG pin allows the user to select LVPECL or
LVDS output termination.
Multiple Supply Voltage Operation.
The HMC6832 operates at 2.5 V or 3.3 V for LVPECL
terminations (2.5 V only for LVDS).
Low Noise.
The HMC6832 noise is low, typically from −168 dBc/Hz to
−162 dBc/Hz up to 3000 MHz.
Low Propagation Delay.
The HMC6832 displays a low delay, less than 207 ps,
typical. Channel skew is also low, ±5 ps, typical.
Low Core Current.
The HMC6832 has a low core current of 56 mA, typical.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
HMC6832
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1 ESD Caution................................................................................ 10 Applications ....................................................................................... 1 Pin Configuration and Function Descriptions........................... 11 General Description ......................................................................... 1 Typical Performance Characteristics ........................................... 12 Product Highlights ........................................................................... 1 Test Circuits ..................................................................................... 18 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 19 Functional Block Diagram .............................................................. 3 LVPECL Output Stage ............................................................... 19 Specifications..................................................................................... 4 Applications Information .............................................................. 21 AC Output Characteristics .......................................................... 4 Recommended Solder Reflow Profile...................................... 21 Output Gain and Power Characteristics ................................... 5 Evaluation Printed Circuit Board (PCB) ................................ 22 Timing Characteristics ................................................................ 8 Outline Dimensions ....................................................................... 23 Timing Specifications .................................................................. 9 Ordering Guide .......................................................................... 23 Absolute Maximum Ratings.......................................................... 10 Thermal Resistance .................................................................... 10 REVISION HISTORY
3/16—Revision A: Initial Version
Rev. A | Page 2 of 23
Data Sheet
HMC6832
FUNCTIONAL BLOCK DIAGRAM
VDD
50kΩ
IN_SEL
HIGH: IN1
LOW: IN0
OUTP7
INP1
50kΩ
OUTN7
100pF
LVDS
OUTP6
VDD
OUTN6
100pF
50kΩ
OUTN5
INN1
50kΩ
4mA
4mA
4mA
LVDS
OUTP4
OUTN4
4mA
LVDS
OUTP5
4mA
4mA
LVDS
4mA
4mA
OUTP3
VDD
OUTN3
50kΩ
OUTP2
INP0
50kΩ
OUTN2
100pF
OUTN1
100pF
OUTN0
50kΩ
4mA
4mA
4mA
LVDS
OUTP0
50kΩ
INN0
4mA
LVDS
OUTP1
VDD
LVDS
4mA
4mA
LVDS
4mA
4mA
VAC_REF
VDD
100kΩ
CONFIGURATION
CONTROL
LVDS
2mA
LVPECL
Figure 1.
Rev. A | Page 3 of 23
13201-001
CONFIG
HIGH: LVDS
LOW: LVPECL
HMC6832
Data Sheet
SPECIFICATIONS
Typical is given as fINPUT = 1.25 GHz (ac-coupled), differential input power = 7.5 dBm, TNOMINAL = 25°C, unless otherwise noted. All outputs
captured using 50 Ω scope termination. 50 Ω board termination on inputs used to minimize reflections.
Table 1.
Parameter
DC INPUT CHARACTERISTICS
VDD
LVPECL
LVDS
Input Common-Mode Voltage
SELECTION PINS
IN_SEL Pin
Input Voltage Low (VIL)
Input Voltage High (VIH)
CONFIG Pin
Input Voltage Low (VIL)
Input Voltage High (VIH)
TEMPERATURE RANGE, TA
SUPPLY CURRENT
Core Current
Min
Typ
Max
Unit
Test Conditions/Comments
2.375
3.0
2.375
GND + 0.2
2.5
3.3
2.5
VDD/2
2.625
3.6
2.625
VDD to 0.2
V
V
V
V
2.5 V operation
3.3 V operation
VDD/2 − 0.4
V
V
2VDD/3 − 0.3
V
V
°C
GND = IN0, VDD = IN1
VDD/2 + 0.4
GND = LVPECL, VDD = LVDS
2VDD/3 + 0.3
−40
Full Load Current
LVPECL Termination
LVDS Termination
INPUT CHARACTERISTICS
Operating Frequency Range
Input Swing (Single-Ended)
Input Capacitance
Input Impedance
Single-Ended
Differential
1
Guaranteed by design
+25
+85
56
56
mA
mA
Outputs unterminated
VDD = 2.5 V
VDD = 3.3 V
301
283
125
mA
mA
mA
RTERM 1 = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω
10
0.1
3500
2
3.6
MHz
V
pF
50
100
kΩ
kΩ
Shunt impedance to VDD and GND
For LVPECL termination, RTERM is the single-ended termination resistance to GND. For LVDS termination, RTERM is the differential termination resistance.
AC OUTPUT CHARACTERISTICS
Table 2.
Parameter
DIFFERENTIAL OUTPUT VOLTAGE SWING
LVPECL Termination
LVDS Termination
OUTPUT VOLTAGE, HIGH LEVEL
LVPECL Termination
LVDS Termination
OUTPUT VOLTAGE, COMMON LEVEL
LVPECL Termination
LVDS Termination
Min
Typ
Max
Unit
652
721
462
mV p-p
mV p-p
mV p-p
1.63
2.51
1.65
V
V
V
1.30
2.15
1.42
V
V
V
Rev. A | Page 4 of 23
Test Conditions/Comments
Differential inputs and outputs; adjusted for impedance
mismatch and printed circuit board (PCB) losses
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Differential inputs and outputs
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Differential inputs and outputs
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Data Sheet
Parameter
OUTPUT VOLTAGE, LOW LEVEL
LVPECL Termination
HMC6832
Min
LVDS Termination
AC PERFORMANCE
3 dB Bandwidth
LVPECL Differential Input
LVDS Differential Input
Output Rise Time (20% to 80%)
LVPECL Termination
LVDS Termination
Output Fall Time (20% to 80%)
LVPECL Termination
LVDS Termination
Duty Cycle Variation
LVPECL Termination
LVDS Termination
Power Supply Rejection Ratio
LVPECL Termination
LVDS Termination
Typ
Max
Unit
0.97
1.79
1.19
V
V
V
1600
2500
3200
1750
2550
4100
MHz
MHz
MHz
MHz
MHz
MHz
56
57
45
ps
ps
ps
59
59
46
ps
ps
ps
50
50
50
%
%
%
−55
−59
−52
dBc
dBc
dBc
Test Conditions/Comments
Differential inputs and outputs
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Adjusted for impedance mismatch and PCB losses
100 mV p-p
200 mV p-p
400 mV p-p
100 mV p-p
200 mV p-p
400 mV p-p
Differential inputs and outputs
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Differential inputs and outputs
RTERM = 86 Ω, VDD = 2.5 V
RTERM = 150 Ω, VDD = 3.3 V
RTERM = 100 Ω, VDD = 2.5 V
Differential inputs and outputs
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 100 Ω
50 kHz, 100 mV p-p sinusoidal signal modulated onto VDD;
single-ended 1 GHz, 0 dBm input; outputs measured
differentially
VDD = 2.5 V
VDD = 3.3 V
VDD = 2.5 V
OUTPUT GAIN AND POWER CHARACTERISTICS
Table 3.
Parameter
SMALL SIGNAL GAIN (S21)
Min
Typ
Max
Unit
Test Conditions/Comments
Adjusted for impedance mismatch and
PCB losses
25
26
22
dB
dB
dB
−10
−8
−11
dBm
dBm
dBm
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 100 Ω
1250 MHz, adjusted for impedance
mismatch and PCB losses
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 100 Ω
LVPECL Termination
LVDS Termination
INPUT 1 dB COMPRESSION POINT (P1dB)
LVPECL Termination
LVDS Termination
Rev. A | Page 5 of 23
HMC6832
Data Sheet
Parameter
SATURATED POWER IN FUNDAMENTAL
TONE (SINGLE-ENDED)
LVPECL Termination
1000 MHz
Min
Typ
2000 MHz
3000 MHz
LVDS Termination
1000 MHz
2000 MHz
3000 MHz
Harmonics
LVPECL Termination
fOUT
2 × fOUT
3 × fOUT
4 × fOUT
5 × fOUT
LVDS Termination
fOUT
2 × fOUT
3 × fOUT
4 × fOUT
5 × fOUT
Output Return Loss < 10 dB
Max
Unit
Test Conditions/Comments
VDD = 2.5 V, adjusted for impedance
mismatch and PCB losses
−4
−3
−2
−1
−5
−4
dBm
dBm
dBm
dBm
dBm
dBm
−7
−7
−7
dBm
dBm
dBm
RTERM = 86 Ω, −4 dBm = 399 mV p-p
RTERM = 150 Ω, −3 dBm = 448 mV p-p
RTERM = 86 Ω, −2 dBm = 502 mV p-p
RTERM = 150 Ω, −1 dBm = 564 mV p-p
RTERM = 86 Ω, −5 dBm = 356 mV p-p
RTERM = 150 Ω, −4 dBm = 399 mV p-p
RTERM = 100 Ω
−7 dBm = 283 mV p-p
−7 dBm = 283 mV p-p
−7 dBm = 283 mV p-p
VDD = 2.5 V, adjusted for impedance
mismatch and PCB losses, fINPUT = 2 GHz
−2
−1
−28
−28
−17
−17
−38
−38
−24
−26
dBm
dBm
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
−7
−22
−16
−38
−29
<6
dBm
dBc
dBc
dBc
dBc
GHz
RTERM = 86 Ω, −2 dBm = 502 mV p-p
RTERM = 150 Ω, −1 dBm = 564 mV p-p
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 86 Ω
RTERM = 150 Ω
RTERM = 100 Ω
−7 dBm = 283 mV p-p
LVDS
Table 4. Jitter
Parameter
FLOOR DENSITY JITTER
Input Carrier Frequency
LVPECL Termination
100 MHz
622 MHz
1000 MHz
1600 MHz
1750 MHz
2000 MHz
3000 MHz
Min
Typ
13.09
1.61
1.26
0.91
0.81
0.64
0.51
Max
Unit
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
Rev. A | Page 6 of 23
Test Conditions/Comments
Single-ended input; differential output; measured with
saturated amplifier to remove amplitude modulation (AM)
noise (only affects 100 MHz data); LVPECL RTERM = 150 Ω;
LVDS RTERM = 100 Ω
Data Sheet
Parameter
LVDS Termination
100 MHz
622 MHz
1000 MHz
1600 MHz
1750 MHz
2000 MHz
3000 MHz
INTEGRATED RMS JITTER
100 MHz Carrier Frequency
LVPECL Termination
60 kHz to 10 MHz
60 kHz to 20 MHz
60 kHz to 40 MHz
LVDS Termination
60 kHz to 10 MHz
60 kHz to 20 MHz
60 kHz to 40 MHz
622.06 MHz Carrier Frequency
LVPECL Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
LVDS Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
1000 MHz Carrier Frequency
LVPECL Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
LVDS Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
1600 MHz Carrier Frequency
LVPECL Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
LVDS Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
2000 MHz Carrier Frequency
LVPECL Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
LVDS Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
HMC6832
Min
Typ
15.55
1.63
1.21
0.80
0.72
0.69
0.64
Max
Unit
Test Conditions/Comments
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
as/√Hz
Single-ended input; differential output; measured with
saturated amplifier to remove AM noise (only affects
100 MHz data); LVPECL RTERM = 150 Ω; LVDS RTERM = 100 Ω
37
52
74
fs rms
fs rms
fs rms
44
62
88
fs rms
fs rms
fs rms
12
14
fs rms
fs rms
12
14
fs rms
fs rms
9
11
fs rms
fs rms
10
10
fs rms
fs rms
7
8
fs rms
fs rms
6
7
fs rms
fs rms
5
6
fs rms
fs rms
5
6
fs rms
fs rms
Rev. A | Page 7 of 23
HMC6832
Parameter
3000 MHz Carrier Frequency
LVPECL Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
LVDS Termination
10 MHz to 80 MHz
10 MHz to 100 MHz
Data Sheet
Min
Typ
Max
Unit
3
4
fs rms
fs rms
4
5
fs rms
fs rms
Test Conditions/Comments
Table 5. Phase Noise Floor
Parameter
SINGLE-SIDEBAND (SSB PHASE NOISE
FLOOR)
Min
Typ
Input Carrier Frequency
LVPECL Termination
100 MHz
622 MHz
1000 MHz
1600 MHz
1750 MHz
2000 MHz
3000 MHz
LVDS Termination
100 MHz
622 MHz
1000 MHz
1600 MHz
1750 MHz
2000 MHz
3000 MHz
Max
Unit
−165.7
−168.0
−166.0
−164.8
−165.0
−165.9
−164.4
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
−164.2
−167.9
−166.4
−165.9
−166.0
−165.2
−162.4
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
Test Conditions/Comments
Single-ended input; differential output;
measured with saturated amplifier to remove
AM noise (only affects 100 MHz data); LVPECL
RTERM = 150 Ω; LVDS RTERM = 100 Ω
TIMING CHARACTERISTICS
TA = 25°C, unless otherwise noted. Minimum/maximum values are guaranteed by design and characterization.
Table 6.
Parameter
TYPICAL CHANNEL SKEW
TYPICAL PROPAGATION DELAY
LVPECL Termination
LVDS Termination
TYPICAL DELAY VARIATION
At TA = 25°C
LVPECL Termination
LVDS Termination
At TA = −40°C to +85°C
LVPECL Termination
LVDS Termination
PROCESS PROPAGATION DELAY VARIATION
Min
−18
Typ
±5
Max
Unit
ps
Test Conditions/Comments
Relative to OUTP5, VDD = 2.5 V or 3.3 V
201
207
ps
ps
VDD = 2.375 V to 3.6 V
VDD = 2.375 V to 2.625 V
±5
±5
ps
ps
VDD = 2.375 V to 3.6 V, measurement uncertainty = ±2 ps
VDD = 2.375 V to 2.625 V, measurement uncertainty = ±2 ps
±13
±13
ps
ps
ps
VDD = 2.375 V to 3.6 V, measurement uncertainty = ±4 ps
VDD = 2.375 V to 2.625 V, measurement uncertainty = ±4 ps
Process simulation, VDD = 2.5 V
+18
Rev. A | Page 8 of 23
Data Sheet
HMC6832
TIMING SPECIFICATIONS
VDD = 2.5 V or 3.3 V, TA = 25°C, unless otherwise noted.
Table 7.
Parameter
tSKEW
tR
tF
tD
Typical
±5
57/45
59/46
201/207
Unit
ps
ps
ps
ps
Description
Output skew
Output rise/fall time (LVPECL/LVDS)
Output rise/fall time (LVPECL/LVDS)
Propagation delay (LVPECL/LVDS)
Timing Diagram
INP0
1
2
3
4
5
6
INN0
1
2
3
4
5
6
tD
OUTN0
1
2
3
4
5
6
OUTP0
1
2
3
4
5
6
OUTP7
1
2
3
OUTN7
1
2
3
4
80%
20%
tR
Figure 2. Timing Diagram
Rev. A | Page 9 of 23
80%
4
20%
5
6
5
6
tF
13201-002
tSKEW
HMC6832
Data Sheet
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 8.
Parameter
Maximum Voltage Between VDD Pins
and EPAD
Maximum RF Power to INPx and INNx
INPx and INNx
Minimum Output Load Resistor
LVPECL (VDD = 2.5 V)
LVPECL (VDD = 3.3 V)
LVPECL Output Load Current
Input Select Voltage Range
Maximum VAC_REF Load Current
Maximum Reflow Temperature
(MSL3 Rating)
ESD Sensitivity
Human Body Model (HBM)
Field Induced Charged Device Model
(FICDM)
Table 9. Thermal Resistance
Rating
−0.3 V to +4 V
15 dBm, single-ended
−0.3 V to +3.6 V
Package Type
28-Lead LFCSP
ESD CAUTION
75 Ω to GND
100 Ω to GND
40 mA/single-ended
output channel
−0.3 V to +3.6 V
2 mA
260°C
Class 1C
Class C4
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Rev. A | Page 10 of 23
θJC
10.6
Unit
°C/W
Data Sheet
HMC6832
23 OUTN4
22 OUTP4
GND 1
OUTP7 2
OUTN7 3
IN_SEL 4
INP1 5
HMC6832
TOP VIEW
(Not to Scale)
OUTP0 12
17 OUTN1
16 OUTP1
15 VDD
OUTN0 13
GND 14
VDD 8
INP0 9
INN0 10
CONFIG 11
INN1 6
VAC_REF 7
21 OUTN3
20 OUTP3
19 OUTN2
18 OUTP2
NOTES
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO GND.
13201-003
28 VDD
27 OUTN6
26 OUTP6
25 OUTN5
24 OUTP5
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 3. Pin Configuration
Table 10. Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Mnemonic
GND
OUTP7
OUTN7
IN_SEL
INP1
INN1
VAC_REF
VDD
INP0
INN0
CONFIG
OUTP0
OUTN0
GND
VDD
OUTP1
OUTN1
OUTP2
OUTN2
OUTP3
OUTN3
OUTP4
OUTN4
OUTP5
OUTN5
OUTP6
OUTN6
VDD
EPAD
Description
Ground.
Differential Signal Output 7, Positive.
Differential Signal Output 7, Negative.
Input Select. Logic 0 = INP0/INN0 and Logic 1 = INP1/INN1.
Differential Signal Input 1, Positive.
Differential Signal Input 1, Negative.
Output Reference Voltage.
Power Supply.
Differential Signal Input 0, Positive.
Differential Signal Input 0, Negative.
Output Termination Configuration Input. Logic 0 = LVPECL and Logic 1 = LVDS.
Differential Signal Output 0, Positive.
Differential Signal Output 0, Negative.
Ground.
Power Supply.
Differential Signal Output 1, Positive.
Differential Signal Output 1, Negative.
Differential Signal Output 2, Positive.
Differential Signal Output 2, Negative.
Differential Signal Output 3, Positive.
Differential Signal Output 3, Negative.
Differential Signal Output 4, Positive.
Differential Signal Output 4, Negative.
Differential Signal Output 5, Positive.
Differential Signal Output 5, Negative.
Differential Signal Output 6, Positive.
Differential Signal Output 6, Negative.
Power Supply.
Exposed Pad. The exposed pad must be connected to GND.
Rev. A | Page 11 of 23
HMC6832
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
Typical is given as fINPUT = 1.25 GHz (ac-coupled), differential input power = 7.5 dBm, TNOMINAL = 25°C, unless otherwise noted. All outputs
captured using 50 Ω scope termination. Used 50 Ω board termination on inputs to minimize reflections.
0.4
0.4
1GHz
2GHz
3GHz
0.3
0.1
0
–0.1
–0.1
–0.2
–0.3
–0.3
–600
–400
–200
0
200
400
600
800
–0.4
–60
0
20
40
60
0.4
1GHz
2GHz
3GHz
0.3
1GHz
2GHz
3GHz
0.3
0.2
0
–0.1
0.1
0
–0.1
–0.2
–0.2
–0.3
–0.3
–400
–200
0
200
400
600
800
TIME (ps)
–0.4
–60
13201-005
–600
Figure 5. LVPECL Differential Output Voltage, 150 Ω, 3.3 V vs. Carrier
Frequency over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
–40
–20
0
20
40
60
TIME (ps)
13201-008
OUTPUT VOLTAGE (V)
0.2
0.1
Figure 8. LVPECL Differential Output Voltage, 150 Ω, 3.3 V vs. Carrier
Frequency over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
0.4
0.4
1GHz
2GHz
3GHz
0.3
1GHz
2GHz
3GHz
0.3
0.2
0
–0.1
0.1
0
–0.1
–0.2
–0.2
–0.3
–0.3
–400
–200
0
TIME (ps)
200
400
600
800
–0.4
–60
13201-006
–600
Figure 6. LVDS Differential Output Voltage, 100 Ω, 2.5 V vs. Carrier Frequency
over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
–40
–20
0
TIME (ps)
20
40
60
13201-009
OUTPUT VOLTAGE (V)
0.2
0.1
–0.4
–800
–20
Figure 7. LVPECL Differential Output Voltage, 86 Ω, 2.5 V vs. Carrier
Frequency over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
0.4
–0.4
–800
–40
TIME (ps)
Figure 4. LVPECL Differential Output Voltage, 86 Ω, 2.5 V vs. Carrier
Frequency over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
OUTPUT VOLTAGE (V)
0
–0.2
TIME (ps)
OUTPUT VOLTAGE (V)
0.1
13201-007
OUTPUT VOLTAGE (V)
0.2
13201-004
OUTPUT VOLTAGE (V)
0.2
–0.4
–800
1GHz
2GHz
3GHz
0.3
Figure 9. LVDS Differential Output Voltage, 100 Ω, 2.5 V vs. Carrier Frequency
over Time, 2 dBm Input, Uncorrected for Board Loss, and
Measurement Band Limited by the Trace Bandwidth
Rev. A | Page 12 of 23
Data Sheet
HMC6832
0
500
LVPECL, 150Ω
450
350
OUTPUT POWER (dBm)
OUTPUT CURRENT (mA)
LVPECL, 86Ω
–5
400
86Ω
300
250
200
150Ω
150
LVDS, 100Ω
–10
–15
–20
100
0
2
1
3
4
5
6
7
8
LOADED BANKS
Figure 10. 3.3 V Current Consumption vs. Loaded Banks
for Given LVPECL RTERM Values
–12
–7
–2
Figure 13. 1.25 GHz Fundamental Differential Output Power vs. Differential
Input Power, Uncorrected for Impedance Mismatch
350
1
300
0
250
–17
INPUT POWER (dBm)
OUTPUT TRACE LOSS (dB)
86Ω
200
150
150Ω
100
–1
–2
–3
BOARD LOSS
200Ω TERMINATION
150Ω TERMINATION
86Ω TERMINATION
–4
–5
50
0
1
2
3
4
5
LOADED BANKS
6
7
8
–6
10M
13201-011
0
100M
1G
10G
CARRIER FREQUENCY (Hz)
13201-014
OUTPUT CURRENT (mA)
–25
–22
13201-010
0
13201-013
50
Figure 14. LVPECL Evaluation Board Output Trace Loss and Distortion from
Impedance Mismatch vs. Carrier Frequency
Figure 11. 2.5 V Current Consumption vs. Loaded Banks
for Given LVDS RTERM Values
5
10
4
5
OUTPUT POWER (dBm)
RELATIVE DELAY (ps)
3
2
1
0
–1
–2
–40°C
+25°C
+85°C
0
–5
–10
–3
–15
0
1
2
3
4
OUTPUT CHANNEL
5
6
7
–20
10M
13201-012
–5
100M
1G
CARRIER FREQUENCY (Hz)
Figure 12. Skew of Outputs Relative to Average Delay, Characterized at 1.25 GHz;
Effects of Customer Evaluation Board Skew and Loss Are De-Embedded
10G
13201-015
–4
Figure 15. LVPECL 2.5 V Fundamental Output Power vs. Carrier Frequency for
Various Temperatures, 0 dBm Input, Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch And Board Loss
Rev. A | Page 13 of 23
HMC6832
Data Sheet
10
35
30
25
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
5
–40°C
+25°C
+85°C
0
–5
–10
20
15
10
5
0
–16dBm
–10dBm
–4dBm
0dBm
+2dBm
–5
–15
+8dBm
100M
1G
10G
CARRIER FREQUENCY (Hz)
Figure 16. LVPECL 3.3 V Fundamental Output Power vs. Carrier Frequency
for Various Temperatures, 0 dBm Input, Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
10
5
5
2.375V
2.500V
2.625V
3.000V
3.300V
3.600V
–5
–10
10G
2.375V
2.500V
2.625V
0
–5
–10
–15
1G
10G
CARRIER FREQUENCY (Hz)
–20
10M
13201-019
100M
Figure 17. LVPECL Fundamental Output Power vs. Carrier Frequency for Various
Supplies, 0 dBm Input, Network Analyzer Gating Used to Remove Input and
Output Impedance Mismatch and Board Loss
100M
1G
10G
CARRIER FREQUENCY (Hz)
13201-024
–15
–20
10M
1G
Figure 19. LVPECL 150 Ω Fundamental Output Power vs. Carrier Frequency
for Various Input Powers, Network Analyzer Gating Used to Remove Input
and Output Impedance Mismatch and Board Loss
10
0
100M
CARRIER FREQUENCY (Hz)
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
–15
10M
13201-017
–20
10M
13201-023
–10
Figure 20. LVDS Fundamental Output Power vs. Carrier Frequency for
Various Supplies, 0 dBm Input, Network Analyzer Gating Used to Remove
Input and Output Impedance Mismatch and Board Loss
10
30
25
2.5V, 200Ω
2.5V, 150Ω
2.5V, 86Ω
–5
–10
15
10
–10dBm
5
–4dBm
0
0dBm
–5
+2dBm
–10
–15
–15
100M
1G
CARRIER FREQUENCY (Hz)
10G
–20
10M
13201-021
–20
10M
–16dBm
Figure 18. LVPECL Fundamental Output Power vs. Carrier Frequency for
Various Terminations, 0 dBm Input, Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
+8dBm
100M
1G
CARRIER FREQUENCY (Hz)
10G
13201-026
0
20
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
5
Figure 21. LVDS Fundamental Output Power vs. Carrier Frequency for
Various Input Powers with 100 Ω, Network Analyzer Gating Used to Remove
Input and Output Impedance Mismatch and Board Loss
Rev. A | Page 14 of 23
HMC6832
–242
–100
–244
–110
–246
–120
–248
FOM (dBc/Hz)
–90
–130
HMC830
SINGLE–ENDED
DIFFERENTIAL
–150
–252
–254
–160
–256
–170
–258
–180
1k
10k
100k
1M
FREQUENCY OFFSET (Hz)
10M
100M
Figure 22. Phase Noise Performance at 2 GHz, HMC830 Used as Signal
Source; Driving 9 dBm Single-Ended Through Balun
–260
LVPECL
LVDS
0
500
1000
1500
2000
2500
3000
SINUSOIDAL INPUT FREQUENCY (MHz)
Figure 25. Phase Noise Performance with Low Frequency Sinusoidal Inputs,
Input Power = 10 dBm Single-Ended, Phase Noise Floor (dBc/Hz) =
Figure of Merit (FOM) (dBc/Hz)) + 10 log(fOUT (Hz))
–154
–160
3000MHz LVPECL
3000MHz LVDS
2000MHz LVPECL
2000MHz LVDS
1000MHz LVPECL
1000MHz LVDS
100MHz LVPECL
100MHz LVDS
–158
–160
–161
PHASE NOISE FLOOR (dBc/Hz)
–156
PHASE NOISE FLOOR (dBc/Hz)
–250
13201-030
–140
13201-027
PHASE NOISE (dBc/Hz)
Data Sheet
–162
–164
–166
–168
–162
–163
–164
LVDS
–165
LVPECL
–166
–167
–168
2
4
6
8
10
SLEW RATE (V/ns)
12
14
16
–170
2.2
13201-028
0
Figure 23. Phase Noise Floor vs. Slew Rate for Carrier Frequencies and Output
Configurations
2.6
2.8
3.0
3.2
3.4
3.6
3.8
SUPPLY VOLTAGE (V)
Figure 26. Phase Noise Floor vs. Supply Voltage for LVPECL and LVDS
–157
–160
–161
–159
–162
PHASE NOISE FLOOR (dBc/Hz)
–158
–160
–161
LVPECL
–162
LVDS
–163
–164
–165
–163
3GHz
–164
–165
2GHz
–166
1GHz
–167
–168
–10
–5
0
5
10
INPUT POWER (dBm)
15
Figure 24. Phase Noise Floor at 1.6 GHz vs. Input Power
–170
–60
–40
–20
0
20
40
60
80
100
TEMPERATURE (°C)
Figure 27. LVPECL Phase Noise Floor vs. Temperature for Various Carrier
Frequencies
Rev. A | Page 15 of 23
13201-032
–169
–166
–15
13201-029
PHASE NOISE FLOOR (dBc/Hz)
2.4
13201-031
–169
–170
HMC6832
Data Sheet
–30
–160
–40
–162
–50
3GHz
–163
SINGLE-ENDED, 2.5V
–60
–164
S12 (dB)
PHASE NOISE FLOOR (dBc/Hz)
–161
2GHz
–165
–166
–70
DIFFERENTIAL, 2.5V
–80
–167
–90
1GHz
–168
–100
–110
–40
–20
0
20
40
60
80
100
TEMPERATURE (°C)
13201-033
–170
–60
Figure 28. LVDS Phase Noise Floor vs. Temperature for Various Carrier Frequencies
0
2
4
6
8
10
FREQUENCY (GHz)
13201-036
–169
Figure 31. LVDS S Parameters (S12), Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
0
0
DIFFERENTIAL, 2.5V
SINGLE-ENDED, 2.5V
DIFFERENTIAL, 3.3V
SINGLE-ENDED, 3.3V
–5
–5
–10
S22 (dB)
S11 (dB)
–10
–15
–15
DIFFERENTIAL, 2.5V
SINGLE-ENDED, 2.5V
DIFFERENTIAL, 3.3V
SINGLE-ENDED, 3.3V
–20
–20
–25
–25
0
2
4
6
8
10
FREQUENCY (GHz)
13201-034
–30
–35
Figure 29. LVDS/LVPECL S Parameters (S11), Network Analyzer Gating Used
to Remove Input and Output Impedance Mismatch and Board Loss
0
2
4
6
8
10
FREQUENCY (GHz)
13201-037
–30
Figure 32. LVPECL S Parameters (S22), Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
0
–30
DIFFERENTIAL, 2.5V
SINGLE-ENDED, 2.5V
DIFFERENTIAL, 3.3V
SINGLE-ENDED, 3.3V
–40
–5
DIFFERENTIAL, 2.5V
–50
–10
S22 (dB)
S12 (dB)
–60
–70
–15
SINGLE-ENDED, 2.5V
–20
–80
–90
–25
0
2
4
6
FREQUENCY (GHz)
8
10
13201-035
–30
–110
Figure 30. LVPECL S Parameters (S12), Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
0
2
4
6
FREQUENCY (GHz)
8
10
13201-038
–100
Figure 33. LVDS S Parameters (S22), Network Analyzer Gating Used to
Remove Input and Output Impedance Mismatch and Board Loss
Rev. A | Page 16 of 23
Data Sheet
HMC6832
140
1.8
136
132
+85°C
+25°C
–40°C
1.6
SUPPLY CURRENT (mA)
1.5
NO LOAD
1.4
1.3
1.2
2.7
2.9
3.1
3.3
3.5
3.7
–40°C
+25°C
+85°C
112
86Ω
300
150Ω
250
200
200Ω
100
50
2.7
2.9
3.1
3.3
3.5
3.7
SUPPLY VOLTAGE (V)
13201-040
CORE
2.5
2.40
2.45
2.50
2.55
2.60
2.65
2.70
Figure 36. LVDS Supply Current vs. Supply Voltage for Various Temperatures
+85°C
+25°C
–40°C
150
2.35
SUPPLY VOLTAGE (V)
400
SUPPLY CURRENT (mA)
116
100
2.30
13201-039
2.5
Figure 34. VAC_REF Output Power vs. Supply Voltage for Various
Temperatures and Current Loads; 600 Ω Signifies 2 mA Output Load
0
2.3
120
104
SUPPLY VOLTAGE (V)
350
124
108
600Ω
1.1
1.0
2.3
128
13201-041
OUTPUT POWER (dBm)
1.7
Figure 35. LVPECL Supply Current vs. Supply Voltage for Various
Temperatures and RTERM Values
Rev. A | Page 17 of 23
HMC6832
Data Sheet
TEST CIRCUITS
VDD = 2.5V/3.3V
SOURCE
GENERATOR
HIGH IMPEDANCE
PROBE
+
HIGH-Z
HMC6832
–
HIGH-Z
50Ω
86Ω/150Ω
86Ω/150Ω
13201-042
50Ω
Figure 37. Test Circuit for DC LVPECL Measurements
VDD = 2.5V
SOURCE
GENERATOR
HIGH IMPEDANCE
PROBE
+
HIGH-Z
100Ω
HMC6832
–
HIGH-Z
50Ω
13201-043
50Ω
Figure 38. Test Circuit for DC LVDS Measurements
VDD = 2.5V/3.3V
SOURCE
GENERATOR
DC BLOCKING
CAPACITORS
OSCILLOSCOPE
+
HMC6832
50Ω
50Ω
86Ω/150Ω
86Ω/150Ω
50Ω
50Ω
13201-044
–
Figure 39. Test Circuit for Transient (AC) LVPECL Measurements
VDD = 2.5V
SOURCE
GENERATOR
DC BLOCKING
CAPACITORS
OSCILLOSCOPE
+
100Ω
HMC6832
50Ω
50Ω
50Ω
50Ω
13201-045
–
Figure 40. Test Circuit for Transient (AC) LVDS Measurements
VDD = 2.5V/3.3V
SATURATED
AMPLIFIER
DC BLOCKING
CAPACITORS
HMC6832
SSA
BALUN
50Ω
50Ω
86Ω/150Ω
86Ω/150Ω
13201-046
50Ω
Figure 41. Test Circuit for Phase Noise LVPECL Measurements
VDD = 2.5V
DC BLOCKING
CAPACITORS
HMC6832
100Ω
SATURATED
AMPLIFIER
SSA
BALUN
50Ω
50Ω
13201-047
50Ω
Figure 42. Test Circuit for Phase Noise LVDS Measurements
Rev. A | Page 18 of 23
Data Sheet
HMC6832
THEORY OF OPERATION
INPUT STAGE
LVPECL OUTPUT STAGE
The input stage shown in Figure 43 is flexible. It can be driven
single-ended or differential with LVPECL, LVDS, or CML signals.
If driven single-ended, place a large ac-coupled capacitor between
the undriven input and a nearby GND pin. The input impedance is
50 kΩ shunted to both VDD and GND. The input is selectable
by the input select pin (IN_SEL), a digital pin that can be set
either to GND (INx0) or VDD (INx1). To select the output
termination, use the configuration pin (CONFIG), a digital pin
that can be set either to GND (LVPECL) or to VDD (LVDS).
When left floating, the CONFIG pin is internally pulled to
VDD (LVDS).
The LVPECL output driver produces up to 0.8 V p-p differential
swing into 100 Ω differential loads. LVPECL drivers are terminated
with off-chip resistors that provide the dc current through the
emitter-follower output stage. If unused, LVPECL outputs can
be left floating. VAC_REF is an output reference voltage capable
of sourcing 2 mA at 1.25 V.
VDD
50kΩ
IN_SEL
HIGH: IN1
LOW: IN0
INP1
50kΩ
100pF
VDD
100pF
50kΩ
INN1
50kΩ
VDD
50kΩ
INP0
50kΩ
100pF
VDD
100pF
50kΩ
INN0
50kΩ
VDD
CONFIGURATION
CONTROL
Figure 43. Input Stage Block Diagram
Rev. A | Page 19 of 23
LVDS
LVPECL
13201-048
100kΩ
CONFIG
HIGH: LVDS
LOW: LVPECL
HMC6832
Data Sheet
OUTP7
OUTN7
LVDS
OUTP6
OUTN6
OUTN5
4mA
4mA
4mA
LVDS
OUTP4
OUTN4
4mA
LVDS
OUTP5
4mA
4mA
LVDS
4mA
4mA
OUTP3
OUTN3
LVDS
OUTP2
OUTN2
OUTN1
4mA
4mA
4mA
4mA
VAC_REF
LVDS
4mA
2mA
13201-049
4mA
4mA
LVDS
OUTP0
OUTN0
4mA
LVDS
OUTP1
Figure 44. Output Stage Block Diagram
A number of choices are available for connecting the LVPECL
drivers and receivers. There are compromises between matching
performance, common-mode levels, and signal swing. For
clocking applications, the user often has the option of using ac
coupling, unlike in many datapath situations. Figure 45 shows a
simplified interface schematic between an LVPECL output and
an input stage, where various options and trade-offs for
the termination components are provided (see Table 11).
The Analog Devices, Inc., evaluation board has a great deal of
flexibility in how the inputs/outputs are configured. Several
configurations are shown in the Applications Information
section.
Table 11. Interface Values
Interface Value
Load Resistor (RL)
150 Ω
200 Ω
300 Ω
Open
VDD = 2.5V/3.3V
OUTP
RL
AC-Coupled Capacitor (CAC)
Large Capacitor
CAC
HMC6832
LVPECL
RL
CAC
13201-050
OUTN
Figure 45. Recommended Interface Diagram
Rev. A | Page 20 of 23
Description
DC current termination for LVPECL
output stage
Analog Devices evaluation board
default, standard LVPECL
termination voltages
Reduced current, no performance
degradation
Further reduced current, lower
output power but flatter
frequency response
If using internal dc termination
network at the receiver
Analog Devices evaluation board
default, if ac coupling is used
Data Sheet
HMC6832
APPLICATIONS INFORMATION
Figure 49 and Figure 50 illustrate the common output interface
configurations.
VDD = 2.5V OR 3.3V
HMC6832
The series resistance (RSERIES) provides impedance matching and
signal attenuation. The RSERIES value is the difference between
the LVCMOS driver output impedance and the transmission
line impedance. Position RSERIES near the LVCMOS driver.
VDD = 2.5V OR 3.3V
Figure 49. LVPECL Output DC Termination Interface
VDD = 2.5V OR 3.3V
DC BLOCKING
CAPACITORS
DC BLOCKING
CAPACITORS
HMC6832
13201-051
HMC6832
86Ω/150Ω
Figure 50. LVPECL Output AC Termination Interface
VDD = 2.5V
RECOMMENDED SOLDER REFLOW PROFILE
The typical Pb-free reflow solder profile shown in Figure 51 is
based on JEDEC J-STD-20C.
HMC6832
60 – 150 SECONDS
RAMP UP
3°C/SECOND MAX
13201-052
100Ω
LVPECL
86Ω/150Ω
Figure 46. LVCMOS AC-Coupled Input Interface
LVDS
86Ω/150Ω
13201-055
RSERIES
86Ω/150Ω
260 – 5/+0°C
217°C
Figure 47. LVDS DC-Coupled Input Interface
VDD = 2.5V OR 3.3V
TEMPERATURE (°C)
150°C – 200°C
DC BLOCKING
CAPACITORS
HMC6832
13201-053
DIFFERENTIAL
RAMP DOWN
6°C/SECOND
MAX.
TIME (Seconds)
60 – 180 SECONDS
Figure 48. Differential Input AC-Coupled Interface
20 – 40 SECONDS
480 SECONDS MAX.
Figure 51. LFCSP Pb-Free Reflow Profile
Rev. A | Page 21 of 23
13201-100
LVCMOS
LVPECL
13201-054
Figure 46 to Figure 48 illustrate the common input interface
configurations. Figure 46 shows how to interface a LVCMOS
input to the HMC6832. A capacitor is needed between the
LVCMOS driver and the HMC6832 to ac couple the input. In
addition, add a capacitor between the inverted input of the
HMC6832 and a nearby GND pin to reduce noise in the system.
HMC6832
Data Sheet
EVALUATION PRINTED CIRCUIT BOARD (PCB)
13201-101
An easy to use evaluation PCB is available from Analog Devices,
Inc., upon request. Top and bottom view layout of the evaluation
board are given in Figure 52 and Figure 53. For the circuit board
in this application, use RF circuit design techniques. Ensure that
signal lines have 50 Ω impedance. Connect the package ground
leads and exposed paddle directly to the ground plane similarly
to that shown in Figure 52 (top view) and Figure 53 (bottom
view). Use a sufficient number of via holes to connect the top
and bottom ground planes.
13201-102
Figure 52. Evaluation PCB (Top View)
Figure 53. Evaluation PCB (Bottom View)
Rev. A | Page 22 of 23
Data Sheet
HMC6832
OUTLINE DIMENSIONS
PIN 1
INDICATOR
0.30
0.25
0.18
PIN 1
INDICATOR
28
22
1
21
0.50
BSC
3.85
3.15 SQ
3.05
EXPOSED
PAD
15
0.65
0.55
0.45
TOP VIEW
1.00
0.90
0.80
7
14
8
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
PKG-000000
SEATING
PLANE
0.20 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-1.
05-06-2015-A
5.10
5.00 SQ
4.90
Figure 54. 28-Lead Lead Frame Chip Scale Package [LFCSP]
5 mm × 5 mm Body, Very Thin Quad
(HCP-28-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
HMC6832ALP5LE
HMC6832ALP5LETR
EV1HMC6832ALP5L
EV2HMC6832ALP5L
1
2
Temperature Range
–40°C to +85°C
–40°C to +85°C
MSL Rating2
MSL3
MSL3
Package Description
28-Lead Lead Frame Chip Scale Package [LFCSP]
28-Lead Lead Frame Chip Scale Package [LFCSP]
Evaluation Board (LVPECL Configuration)
Evaluation Board (LVDS Configuration)
Package Option
HCP-28-1
HCP-28-1
The HMC6832ALP5LE and HMC6832ALP5LETR are RoHS Compliant Parts.
The maximum peak reflow temperature is 260°C for the HMC6832ALP5LE and HMC6832ALP5LETR. See the Absolute Maximum Ratings section, Table 8.
©2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13201-0-3/16(A)
Rev. A | Page 23 of 23