INFINEON TLE4296GV33

Low Drop Voltage Regulator
TLE 4296
Features
•
•
•
•
•
•
•
•
•
•
•
•
Three versions: 3.0 V, 3.3 V, 5.0 V
Output voltage tolerance ≤ ±4%
Very low drop voltage
Output current: 30 mA
Inhibit input
Low quiescent current consumption
Wide operation range: up to 45 V
Wide temperature range: -40 °C ≤ Tj ≤ 150 °C
Output protected against short circuit
Overtemperature protection
Reverse polarity proof
Very small SMD-Package P-SCT595-5
SCT 595
Functional Description
The TLE 4296 G is a monolithic integrated low drop voltage regulator in the very small
SMD package P-SCT595-5. It is designed to supply e.g. microprocessor systems under
the severe conditions of automotive applications. Therefore the device is equipped with
additional protection functions against overload, short circuit and reverse polarity. At
overtemperature the regulator is automatically turned off by the integrated thermal
protection circuit.
Input voltages up to 40 V are regulated to VQ,nom = 3.0 V (V30 version) 3.3 V (V33
version) or 5.0 V (V50 version). The output is able to drive a load of more than 30 mA
while it regulates the output voltage within a 4% accuracy.
To save energy the device can be switched in stand-by mode via an inhibit input which
causes the current consumption to drop below 5 µA.
Type
Ordering Code
Package
TLE 4296 GV30
Q67006-A9339
P-SCT595-5
TLE 4296 GV33
Q67006-A9340
P-SCT595-5
TLE 4296 GV50
Q67006-A9372
P-SCT595-5
Data Sheet
1
Rev. 1.0, 2004-01-01
TLE 4296
INH
1
GND
2
Ι
3
5
GND
4
Q
AEP02253
Figure 1
Pin Configuration (top view)
Table 1
Pin Definitions and Functions
Pin No.
Symbol
Function
1
INH
Inhibit input; high level to turn IC on
2
GND
Ground; connected to pin 5
3
I
Input voltage
4
Q
Output voltage; must be blocked by a capacitor
CQ ≥ 2.2 µF, 3 Ω ≤ ESR ≤ 10 Ω
5
GND
Ground; connected to pin 2
Data Sheet
2
Rev. 1.0, 2004-01-01
TLE 4296
Saturation
Control and
Protection
Circuit
Temperature
Control
Ι
3
4
Band-GapReferenz
+
2,5
1
GND
INH
Figure 2
Data Sheet
Q
AEB02312
Block Diagram
3
Rev. 1.0, 2004-01-01
TLE 4296
Table 2
Absolute Maximum Ratings
-40 °C < Tj < 150 °C
Parameter
Symbol
Limit Values
Unit
Remarks
Min.
Max.
VI
II
-42
45
V
–
–
–
mA
internally limited
VQ
IQ
-6
30
V
–
–
–
mA
internally limited
VINH
IINH
IINH
-42
45
V
–
-500
*
µA
* internally limited
-5
5
mA
-0.3 V < VI < 45 V;
tp < 1 ms
Tj
Tstg
-40
150
°C
–
-50
150
°C
–
Rthj-pin
Rthja
–
30
K/W
measured to pin 5
–
179
K/W
zero airflow
zero heat sink area
Input
Voltage
Current
Output
Voltage
Current
Inhibit
Voltage
Current
Current
Temperatures
Junction temperature
Storage temperature
Thermal Resistances
Junction pin
Junction ambient1)
1) Worst case regarding peak temperature.
Note: Maximum ratings are absolute ratings; exceeding any one of these values may
cause irreversible damage to the integrated circuit.
Data Sheet
4
Rev. 1.0, 2004-01-01
TLE 4296
Table 3
Operating Range
Parameter
Input voltage
Inhibit voltage
Junction temperature
Data Sheet
Symbol
VI
VI
VI
VINH
Tj
Limit Values
Unit
Remarks
Min.
Max.
4.0
45
V
TLE 4296 GV30
4.0
45
V
TLE 4296 GV33
5.5
45
V
TLE 4296 GV50
-0.3
40
V
–
-40
150
°C
–
5
Rev. 1.0, 2004-01-01
TLE 4296
Table 4
Electrical Characteristics
VI = 13.5 V; VINH > +2.5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit Test Condition
Output voltage
V30 version
VQ
2.88
3.0
3.12
V
1 mA < IQ < 30 mA
VI = 13.5 V
Output voltage
V30 version
VQ
2.88
3.0
3.12
V
Output voltage
V33 version
VQ
3.17
3.30
3.43
V
Output voltage
V33 version
VQ
3.17
3.30
3.43
V
Output voltage
V50 version
VQ
4.80
5.00
5.20
V
Output voltage
V50 version
VQ
4.80
5.00
5.20
V
IQ = 10 mA
4 V < VI < 40 V
1 mA < IQ < 30 mA
VI = 13.5 V
IQ = 10 mA
4.3 V < VI < 40 V
1 mA < IQ < 30 mA
VI = 13.5 V
IQ = 10 mA
6 V < VI < 40 V
Output current limitation
IQ
Vdr
CQ
30
–
–
mA
1)
–
0.25
0.30
V
IQ = 20 mA1)
2.2
–
–
µF
3 Ω ≤ ESR ≤ 10 Ω
at 100 kHz
Current consumption
Iq = II - IQ
Iq
–
2
4.5
mA
IQ < 30 mA
Current consumption
Iq = II - IQ
Iq
–
110
170
µA
Quiescent current
(stand-by)
Iq = II - IQ
Iq
–
0
1
µA
IQ < 1 mA;
Tj < 85 °C
VINH = 0.4 V;
Tj < 85 °C
Quiescent current
(stand-by)
Iq = II - IQ
Iq
–
0
5
µA
VINH = 0.4 V
Load regulation
∆VQ
–
10
20
mV
1 mA < IQ < 25 mA;
Tj = 25 °C
Line regulation
∆VQ
–
5
20
mV
VI = (VQ,nom + 0.5 V)
Drop voltage
Output capacitor
to 36 V
IQ = 5 mA; Tj = 25 °C
Data Sheet
6
Rev. 1.0, 2004-01-01
TLE 4296
Table 4
Electrical Characteristics (cont’d)
VI = 13.5 V; VINH > +2.5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Power-Supply-RippleRejection
Symbol
Limit Values
Unit Test Condition
Min.
Typ.
Max.
PSRR
–
60
–
dB
fr = 100 Hz;
Vr = 0.5 Vpp
VINH, high
VINH, low
IINH, high
IINH, low
–
–
2.2
V
0.4
–
–
V
–
8
12
µA
-2
–
2
µA
VQ > 0.95 VQ,nom
VQ > 0.1 V
VINH = 5 V
VINH = 0 V
Logic Inhibit Input
Inhibit, Turn-on voltage
Inhibit, Turn-off voltage
H-input current
L-input current
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value.
Data Sheet
7
Rev. 1.0, 2004-01-01
TLE 4296
Typical Performance Characteristics
Output Voltage VQ versus
Input Voltage VI
AED03348.VSD
10
VQ
Current Consumption Iq versus
Input Voltage VI
VINH = 5 V
RL = 1 kΩ
V
AED03347.VSD
1000
Iq
µA
8
800
6
600
VINH = 5 V
GV50
4
RL = 1 kΩ
400
GV33
GV30
2
0
200
0
2
4
6
8
0
V 10
VI
Data Sheet
RL = 5 kΩ
0
10
20
30
40 V 50
VI
8
Rev. 1.0, 2004-01-01
TLE 4296
V Q ,nom + 0.5 V to 45 V
Ι
CΙ
100 nF
Inhibit
INH
4
3
1
Q
3.0V / 3.3V / 5.0V
TLE 4296 G
CQ
2.2 µF
2,5
RQ
3.3 Ω
GND
AES02313
Figure 3
Application Circuit
Application Information
In the TLE 4296 G the output voltage is divided and compared to an internal reference
of 2.5 V typical. The regulation loop controls the output to achieve a stabilized output
voltage.
Figure 3 shows a typical application circuit. In order to maintain the stability of the control
loop the TLE 4296 G output requires an output capacitor CQ of at least 2.2 µF with an
ESR of max. 10 Ω and min. 3 Ω. It is recommended to use tantalum (e.g. the EPCOS
3.3 µF / 16V B45196P3335M209 or 4.7 µF / 10 V B45196-P2475M109) or a multi layer
ceramic capacitor with a series resistor in order to cover these limits over the full
operating temperature range of -40 °C to 150 °C.
At the input of the regulator an input capacitor is necessary for compensating line
influences (100 nF ceramic capacitor recommended). A resistor of approx. 1 Ω in series
with CI, can damp any oscillation occurring due the input inductivity and the input
capacitor.
Data Sheet
9
Rev. 1.0, 2004-01-01
TLE 4296
Package Outlines
2.9 ±0.2
B
(2.2)
1.2 +0.1
-0.05
1.1 max
(0.3)
10˚max
1.6 ±0.1
10˚max
1)
+0.2
acc. to
DIN 6784
2.6 max
0.25 min
0.1 max
(0.23)
(0.13)
(0.4)
1)
0.3 +0.1
-0.05
0.15 +0.1
-0.06
0.6 +0.1
-0.05
0.20
0.95
1.9
0.25
M
B
1)
M
A
A
Contour of slot depends on profile
of gull-wing lead form
GPW05997
Figure 4
P-SCT595-5 (Plastic Small Outline)
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Dimensions in mm
SMD = Surface Mounted Device
Data Sheet
10
Rev. 1.0, 2004-01-01
Edition 2004-01-01
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2004.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.