SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data Cool MOS™ Power Transistor Feature VDS @ Tjmax 560 V RDS(on) 0.6 Ω ID 7.6 A • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated P-TO220-3-31 P-TO262-3-1 P-TO220-3-1 • Extreme dv/dt rated • Ultra low effective capacitances 1 • Improved transconductance 2 3 P-TO220-3-31 • P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute) Type SPP08N50C3 Package P-TO220-3-1 Ordering Code Q67040-S4567 Marking 08N50C3 SPI08N50C3 P-TO262-3-1 Q67040-S4568 08N50C3 SPA08N50C3 P-TO220-3-31 Q67040-S4576 08N50C3 Maximum Ratings Parameter Symbol Value SPP_I Continuous drain current Unit SPA A ID TC = 25 °C 7.6 7.61) TC = 100 °C 4.6 4.61) Pulsed drain current, tp limited by Tjmax ID puls 22.8 22.8 A Avalanche energy, single pulse EAS 230 230 mJ EAR 0.5 0.5 Avalanche current, repetitive tAR limited by Tjmax IAR 7.6 7.6 A Gate source voltage VGS ±20 ±20 V Gate source voltage AC (f >1Hz) VGS ±30 ±30 Power dissipation, TC = 25°C Ptot 83 32 Operating and storage temperature T j , Tstg ID=5.5A, VDD=50V Avalanche energy, repetitive tAR limited by Tjmax2) ID=7.6A, VDD=50V Page 1 -55...+150 W °C 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit VDS = 400 V, ID = 7.6 A, Tj = 125 °C Thermal Characteristics Symbol Parameter min. typ. max. Thermal resistance, junction - case RthJC - - 1.5 Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.9 Thermal resistance, junction - ambient, leaded RthJA - - 62 Thermal resistance, junction - ambient, FullPAK RthJA FP Tsold - - 80 - - 260 Soldering temperature, K/W °C 1.6 mm (0.063 in.) from case for 10s 3) Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS VGS=0V, ID=7.6A Values Unit min. typ. max. 500 - - - 600 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=350µA, VGS =VDS Zero gate voltage drain current IDSS V DS=500V, V GS=0V, Gate-source leakage current IGSS Drain-source on-state resistance RDS(on) Gate input resistance RG µA Tj=25°C - 0.5 1 Tj=150°C - - 100 V GS=20V, V DS=0V - - 100 Ω V GS=10V, I D=4.6A Tj=25°C - 0.5 0.6 Tj=150°C - 1.5 - f=1MHz, open drain - 1.2 - Page 2 nA 2003-06-27 Final data SPP08N50C3, SPI08N50C3 SPA08N50C3 Electrical Characteristics Parameter Transconductance Symbol gfs Conditions VDS≥2*ID*R DS(on)max, Values Unit min. typ. max. - 6 - S pF ID=4.6A Input capacitance Ciss VGS=0V, VDS=25V, - 750 - Output capacitance Coss f=1MHz - 350 - Reverse transfer capacitance Crss - 12 - - 56 - - 30 - Effective output capacitance,4) Co(er) VGS=0V, VDS=400 energy related Effective output capacitance,5) Co(tr) time related Turn-on delay time td(on) VDD=380V, VGS=0/10V, - 6 - Rise time tr ID=7.6A, - 5 - Turn-off delay time td(off) RG =12Ω - 60 - Fall time tf - 7 - - 3 - - 17 - - 32 - - 5 - ns Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg V DD=400V, ID=7.6A V DD=400V, ID=7.6A, nC V GS=0 to 10V Gate plateau voltage V(plateau) VDD=400V, ID=7.6A V 1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as P =E *f. AR AV 3Soldering temperature for TO-263: 220°C, reflow 4C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS. 5C o(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Page 3 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data Electrical Characteristics Parameter Symbol Inverse diode continuous IS Conditions Values Unit min. typ. max. - - 7.6 - - 22.8 TC=25°C A forward current Inverse diode direct current, ISM pulsed Inverse diode forward voltage VSD V GS=0V, IF=IS - 1 1.2 V Reverse recovery time trr V R=400V, IF=IS , - 370 - ns Reverse recovery charge Qrr diF/dt=100A/µs - 3.6 - µC Peak reverse recovery current Irrm - 25 - A Peak rate of fall of reverse dirr /dt - 700 - A/µs Tj=25°C recovery current Typical Transient Thermal Characteristics Symbol Value Unit SPP_B SPA Rth1 0.024 0.024 Rth2 0.046 Rth3 Symbol Value Unit SPP_B SPA Cth1 0.00012 0.00012 0.046 Cth2 0.0004578 0.0004578 0.085 0.085 Cth3 0.000645 0.000645 Rth4 0.308 0.195 Cth4 0.001867 0.001867 Rth5 0.317 0.45 Cth5 0.004795 0.007558 Rth6 0.112 2.511 Cth6 0.045 0.412 Tj K/W R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Page 4 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data 1 Power dissipation 2 Power dissipation FullPAK Ptot = f (TC) Ptot = f (TC) 100 SPP08N50C3 35 W W 80 25 Ptot Ptot 70 60 20 50 15 40 30 10 20 5 10 0 0 20 40 60 80 100 120 °C 0 0 160 20 40 60 80 100 120 TC 3 Safe operating area 4 Safe operating area FullPAK ID = f ( VDS ) ID = f (VDS) parameter : D = 0 , TC=25°C parameter: D = 0, TC = 25°C 10 2 °C 150 TC 10 2 10 1 10 1 ID A ID A 10 0 10 -1 10 -2 0 10 10 0 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 10 1 10 -1 10 2 10 V VDS 3 Page 5 10 -2 0 10 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 2 10 V VDS 2003-06-27 3 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data 5 Transient thermal impedance 6 Transient thermal impedance FullPAK ZthJC = f (tp) ZthJC = f (tp) parameter: D = tp/T parameter: D = tp/t 10 1 10 1 K/W K/W ZthJC 10 0 ZthJC 10 0 10 -1 10 -2 10 -3 -7 10 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -6 10 -5 10 -4 10 -3 10 -2 10 s tp D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -3 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10 -1 1 s 10 tp 7 Typ. output characteristic 8 Typ. output characteristic ID = f (VDS); Tj =25°C ID = f (VDS); Tj =150°C parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS 13 24 A 20V 10V 8V A 20V 8V 6.5V 11 7V 6V 9 6,5V 16 ID ID 10 8 5.5V 7 12 6V 6 5V 5 8 5,5V 4 4.5V 3 5V 4 2 4,5V 0 0 5 10 15 VDS 4V 1 25 V 0 0 2 4 6 8 10 12 14 16 18 20 22 V 25 VDS Page 6 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data 9 Typ. drain-source on resistance 10 Drain-source on-state resistance RDS(on)=f(ID) RDS(on) = f (Tj) parameter: Tj=150°C, VGS parameter : ID = 4.6 A, VGS = 10 V 10 4.5V RDS(on) 8 SPP08N50C3 Ω 4V 2.8 RDS(on) Ω 3.4 7 5V 6 6V 6.5V 8V 20V 5 5.5V 4 2.4 2 1.6 1.2 3 typ 0.4 1 0 0 98% 0.8 2 2 4 6 8 10 12 0 -60 A 15 ID -20 20 60 100 180 Tj 11 Typ. transfer characteristics 12 Typ. gate charge ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (QGate) parameter: ID = 7.6 A pulsed parameter: tp = 10 µs °C 24 16 SPP08N50C3 A V 25°C 20 12 16 VGS ID 18 14 0,2 VDS max 10 150°C 12 0,8 VDS max 8 10 6 8 6 4 4 2 2 0 0 2 4 6 V 10 0 0 5 10 15 20 25 30 35 40 nC 50 QGate VGS Page 7 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data 13 Forward characteristics of body diode 14 Avalanche SOA IF = f (VSD) IAR = f (tAR) parameter: Tj , tp = 10 µs par.: Tj ≤ 150 °C 10 2 SPP08N50C3 8 A A 6 IAR IF 10 1 5 T j(START)=25°C 4 3 10 0 T j(START)=125°C Tj = 25 °C typ 2 Tj = 150 °C typ Tj = 25 °C (98%) 1 Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 0 -3 10 3 10 -2 10 -1 10 0 10 1 10 2 4 µs 10 tAR VSD 15 Avalanche energy 16 Drain-source breakdown voltage EAS = f (Tj) V(BR)DSS = f (Tj) par.: ID = 5.5 A, VDD = 50 V 260 600 mJ SPP08N50C3 V 220 V(BR)DSS EAS 200 180 160 570 560 550 540 140 530 120 520 100 510 500 80 490 60 480 40 470 20 0 20 460 40 60 80 100 120 °C 160 Tj 450 -60 -20 20 60 100 °C 180 Tj Page 8 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data 17 Avalanche power losses 18 Typ. capacitances PAR = f (f ) C = f (VDS) parameter: EAR =0.5mJ parameter: VGS =0V, f=1 MHz 10 4 500 pF W Ciss C PAR 10 3 300 10 2 Coss 200 10 1 100 Crss 0 4 10 10 5 10 MHz 6 10 0 0 100 200 300 V 500 VDS f 19 Typ. Coss stored energy Eoss=f(VDS) 4 µJ E oss 3 2.5 2 1.5 1 0.5 0 0 100 200 300 V 500 VDS Page 9 2003-06-27 Final data SPP08N50C3, SPI08N50C3 SPA08N50C3 Definition of diodes switching characteristics Page 10 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data P-TO-220-3-1 B 4.44 0.05 9.98 ±0.48 2.8 ±0.2 1.27±0.13 13.5 ±0.5 C A 5.23 ±0.9 15.38 ±0.6 10 ±0.4 3.7 ±0.2 0.5 ±0.1 3x 0.75 ±0.1 2.51±0.2 1.17 ±0.22 2x 2.54 0.25 M A B C All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3 Page 11 2003-06-27 SPP08N50C3, SPI08N50C3 SPA08N50C3 Final data P-TO-262-3-1 (I2-PAK) 10 ±0.2 A B 0...0.3 4.4 1) 0.05 13.5 ±0.5 4.55 ±0.2 C 2.4 9.25 ±0.2 1 ±0.3 1.27 7.55 11.6 ±0.3 8.5 1) 0.5 ±0.1 0...0.15 2.4 1.05 3 x 0.75 ±0.1 2 x 2.54 1) 0.25 M A B C Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut. P-TO-220-3-31 (FullPAK) Please refer to mounting instructions (application note AN-TO220-3-31-01) Page 12 2003-06-27 Final data SPP08N50C3, SPI08N50C3 SPA08N50C3 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 13 2003-06-27