INFINEON SPA08N50C3

SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
Cool MOS™ Power Transistor
Feature
VDS @ Tjmax
560
V
RDS(on)
0.6
Ω
ID
7.6
A
• New revolutionary high voltage technology
• Ultra low gate charge
• Periodic avalanche rated
P-TO220-3-31
P-TO262-3-1
P-TO220-3-1
• Extreme dv/dt rated
• Ultra low effective capacitances
1
• Improved transconductance
2
3
P-TO220-3-31
• P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type
SPP08N50C3
Package
P-TO220-3-1
Ordering Code
Q67040-S4567
Marking
08N50C3
SPI08N50C3
P-TO262-3-1
Q67040-S4568
08N50C3
SPA08N50C3
P-TO220-3-31 Q67040-S4576
08N50C3
Maximum Ratings
Parameter
Symbol
Value
SPP_I
Continuous drain current
Unit
SPA
A
ID
TC = 25 °C
7.6
7.61)
TC = 100 °C
4.6
4.61)
Pulsed drain current, tp limited by Tjmax
ID puls
22.8
22.8
A
Avalanche energy, single pulse
EAS
230
230
mJ
EAR
0.5
0.5
Avalanche current, repetitive tAR limited by Tjmax
IAR
7.6
7.6
A
Gate source voltage
VGS
±20
±20
V
Gate source voltage AC (f >1Hz)
VGS
±30
±30
Power dissipation, TC = 25°C
Ptot
83
32
Operating and storage temperature
T j , Tstg
ID=5.5A, VDD=50V
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=7.6A, VDD=50V
Page 1
-55...+150
W
°C
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
Maximum Ratings
Parameter
Symbol
Drain Source voltage slope
dv/dt
Value
Unit
50
V/ns
Values
Unit
VDS = 400 V, ID = 7.6 A, Tj = 125 °C
Thermal Characteristics
Symbol
Parameter
min.
typ.
max.
Thermal resistance, junction - case
RthJC
-
-
1.5
Thermal resistance, junction - case, FullPAK
RthJC_FP
-
-
3.9
Thermal resistance, junction - ambient, leaded
RthJA
-
-
62
Thermal resistance, junction - ambient, FullPAK
RthJA FP
Tsold
-
-
80
-
-
260
Soldering temperature,
K/W
°C
1.6 mm (0.063 in.) from case for 10s 3)
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter
Symbol
Conditions
Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA
Drain-Source avalanche
V(BR)DS VGS=0V, ID=7.6A
Values
Unit
min.
typ.
max.
500
-
-
-
600
-
2.1
3
3.9
V
breakdown voltage
Gate threshold voltage
VGS(th)
ID=350µA, VGS =VDS
Zero gate voltage drain current
IDSS
V DS=500V, V GS=0V,
Gate-source leakage current
IGSS
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
µA
Tj=25°C
-
0.5
1
Tj=150°C
-
-
100
V GS=20V, V DS=0V
-
-
100
Ω
V GS=10V, I D=4.6A
Tj=25°C
-
0.5
0.6
Tj=150°C
-
1.5
-
f=1MHz, open drain
-
1.2
-
Page 2
nA
2003-06-27
Final data
SPP08N50C3, SPI08N50C3
SPA08N50C3
Electrical Characteristics
Parameter
Transconductance
Symbol
gfs
Conditions
VDS≥2*ID*R DS(on)max,
Values
Unit
min.
typ.
max.
-
6
-
S
pF
ID=4.6A
Input capacitance
Ciss
VGS=0V, VDS=25V,
-
750
-
Output capacitance
Coss
f=1MHz
-
350
-
Reverse transfer capacitance
Crss
-
12
-
-
56
-
-
30
-
Effective output capacitance,4) Co(er)
VGS=0V, VDS=400
energy related
Effective output capacitance,5) Co(tr)
time related
Turn-on delay time
td(on)
VDD=380V, VGS=0/10V,
-
6
-
Rise time
tr
ID=7.6A,
-
5
-
Turn-off delay time
td(off)
RG =12Ω
-
60
-
Fall time
tf
-
7
-
-
3
-
-
17
-
-
32
-
-
5
-
ns
Gate Charge Characteristics
Gate to source charge
Qgs
Gate to drain charge
Qgd
Gate charge total
Qg
V DD=400V, ID=7.6A
V DD=400V, ID=7.6A,
nC
V GS=0 to 10V
Gate plateau voltage
V(plateau) VDD=400V, ID=7.6A
V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as P =E *f.
AR
AV
3Soldering temperature for TO-263: 220°C, reflow
4C
o(er)
is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS.
5C
o(tr)
is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Page 3
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
Electrical Characteristics
Parameter
Symbol
Inverse diode continuous
IS
Conditions
Values
Unit
min.
typ.
max.
-
-
7.6
-
-
22.8
TC=25°C
A
forward current
Inverse diode direct current,
ISM
pulsed
Inverse diode forward voltage
VSD
V GS=0V, IF=IS
-
1
1.2
V
Reverse recovery time
trr
V R=400V, IF=IS ,
-
370
-
ns
Reverse recovery charge
Qrr
diF/dt=100A/µs
-
3.6
-
µC
Peak reverse recovery current
Irrm
-
25
-
A
Peak rate of fall of reverse
dirr /dt
-
700
-
A/µs
Tj=25°C
recovery current
Typical Transient Thermal Characteristics
Symbol
Value
Unit
SPP_B
SPA
Rth1
0.024
0.024
Rth2
0.046
Rth3
Symbol
Value
Unit
SPP_B
SPA
Cth1
0.00012
0.00012
0.046
Cth2
0.0004578
0.0004578
0.085
0.085
Cth3
0.000645
0.000645
Rth4
0.308
0.195
Cth4
0.001867
0.001867
Rth5
0.317
0.45
Cth5
0.004795
0.007558
Rth6
0.112
2.511
Cth6
0.045
0.412
Tj
K/W
R th1
R th,n
T case
Ws/K
E xternal H eatsink
P tot (t)
C th1
C th2
C th,n
T am b
Page 4
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
1 Power dissipation
2 Power dissipation FullPAK
Ptot = f (TC)
Ptot = f (TC)
100
SPP08N50C3
35
W
W
80
25
Ptot
Ptot
70
60
20
50
15
40
30
10
20
5
10
0
0
20
40
60
80
100
120
°C
0
0
160
20
40
60
80
100
120
TC
3 Safe operating area
4 Safe operating area FullPAK
ID = f ( VDS )
ID = f (VDS)
parameter : D = 0 , TC=25°C
parameter: D = 0, TC = 25°C
10
2
°C 150
TC
10 2
10 1
10 1
ID
A
ID
A
10 0
10 -1
10 -2 0
10
10 0
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
10
1
10 -1
10
2
10
V
VDS
3
Page 5
10 -2 0
10
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
10
1
10
2
10
V
VDS
2003-06-27
3
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
5 Transient thermal impedance
6 Transient thermal impedance FullPAK
ZthJC = f (tp)
ZthJC = f (tp)
parameter: D = tp/T
parameter: D = tp/t
10 1
10 1
K/W
K/W
ZthJC
10 0
ZthJC
10 0
10 -1
10 -2
10 -3 -7
10
10 -1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10
-6
10
-5
10
-4
10
-3
10 -2
10
s
tp
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10 -3 -7
-6
-5
-4
-3
-2
-1
10
10
10
10
10
10
10
-1
1
s 10
tp
7 Typ. output characteristic
8 Typ. output characteristic
ID = f (VDS); Tj =25°C
ID = f (VDS); Tj =150°C
parameter: tp = 10 µs, VGS
parameter: tp = 10 µs, VGS
13
24
A
20V
10V
8V
A
20V
8V
6.5V
11
7V
6V
9
6,5V
16
ID
ID
10
8
5.5V
7
12
6V
6
5V
5
8
5,5V
4
4.5V
3
5V
4
2
4,5V
0
0
5
10
15
VDS
4V
1
25
V
0
0
2
4
6
8
10 12 14 16 18 20 22 V 25
VDS
Page 6
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
9 Typ. drain-source on resistance
10 Drain-source on-state resistance
RDS(on)=f(ID)
RDS(on) = f (Tj)
parameter: Tj=150°C, VGS
parameter : ID = 4.6 A, VGS = 10 V
10
4.5V
RDS(on)
8
SPP08N50C3
Ω
4V
2.8
RDS(on)
Ω
3.4
7
5V
6
6V
6.5V
8V
20V
5
5.5V
4
2.4
2
1.6
1.2
3
typ
0.4
1
0
0
98%
0.8
2
2
4
6
8
10
12
0
-60
A 15
ID
-20
20
60
100
180
Tj
11 Typ. transfer characteristics
12 Typ. gate charge
ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max
VGS = f (QGate)
parameter: ID = 7.6 A pulsed
parameter: tp = 10 µs
°C
24
16
SPP08N50C3
A
V
25°C
20
12
16
VGS
ID
18
14
0,2 VDS max
10
150°C
12
0,8 VDS max
8
10
6
8
6
4
4
2
2
0
0
2
4
6
V
10
0
0
5
10
15
20
25
30
35
40 nC
50
QGate
VGS
Page 7
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
13 Forward characteristics of body diode
14 Avalanche SOA
IF = f (VSD)
IAR = f (tAR)
parameter: Tj , tp = 10 µs
par.: Tj ≤ 150 °C
10 2
SPP08N50C3
8
A
A
6
IAR
IF
10
1
5
T j(START)=25°C
4
3
10 0
T j(START)=125°C
Tj = 25 °C typ
2
Tj = 150 °C typ
Tj = 25 °C (98%)
1
Tj = 150 °C (98%)
10 -1
0
0.4
0.8
1.2
1.6
2
2.4 V
0 -3
10
3
10
-2
10
-1
10
0
10
1
10
2
4
µs 10
tAR
VSD
15 Avalanche energy
16 Drain-source breakdown voltage
EAS = f (Tj)
V(BR)DSS = f (Tj)
par.: ID = 5.5 A, VDD = 50 V
260
600
mJ
SPP08N50C3
V
220
V(BR)DSS
EAS
200
180
160
570
560
550
540
140
530
120
520
100
510
500
80
490
60
480
40
470
20
0
20
460
40
60
80
100
120
°C
160
Tj
450
-60
-20
20
60
100
°C
180
Tj
Page 8
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
17 Avalanche power losses
18 Typ. capacitances
PAR = f (f )
C = f (VDS)
parameter: EAR =0.5mJ
parameter: VGS =0V, f=1 MHz
10 4
500
pF
W
Ciss
C
PAR
10 3
300
10 2
Coss
200
10 1
100
Crss
0 4
10
10
5
10
MHz
6
10 0
0
100
200
300
V
500
VDS
f
19 Typ. Coss stored energy
Eoss=f(VDS)
4
µJ
E oss
3
2.5
2
1.5
1
0.5
0
0
100
200
300
V
500
VDS
Page 9
2003-06-27
Final data
SPP08N50C3, SPI08N50C3
SPA08N50C3
Definition of diodes switching characteristics
Page 10
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
P-TO-220-3-1
B
4.44
0.05
9.98 ±0.48
2.8 ±0.2
1.27±0.13
13.5 ±0.5
C
A
5.23 ±0.9
15.38 ±0.6
10 ±0.4
3.7 ±0.2
0.5 ±0.1
3x
0.75 ±0.1
2.51±0.2
1.17 ±0.22
2x 2.54
0.25
M
A B C
All metal surfaces tin plated, except area of cut.
Metal surface min. x=7.25, y=12.3
Page 11
2003-06-27
SPP08N50C3, SPI08N50C3
SPA08N50C3
Final data
P-TO-262-3-1 (I2-PAK)
10 ±0.2
A
B
0...0.3
4.4
1)
0.05
13.5 ±0.5
4.55 ±0.2
C
2.4
9.25 ±0.2
1 ±0.3
1.27
7.55
11.6 ±0.3
8.5
1)
0.5 ±0.1
0...0.15
2.4
1.05
3 x 0.75 ±0.1
2 x 2.54
1)
0.25
M
A B C
Typical
Metal surface min. X = 7.25, Y = 6.9
All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
Page 12
2003-06-27
Final data
SPP08N50C3, SPI08N50C3
SPA08N50C3
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 13
2003-06-27