SPD07N60C3 SPU07N60C3 Final data Cool MOS™ Power Transistor Feature VDS @ Tjmax 650 V RDS(on) 0.6 Ω ID 7.3 A • New revolutionary high voltage technology • Worldwide best RDS(on) in TO-251 and TO-252 P-TO251-3-1 • Ultra low gate charge P-TO252-3-1 • Periodic avalanche rated • Extreme dv/dt rated • High peak current capability • Improved transconductance Type Package Ordering Code Marking SPD07N60C3 P-TO252-3-1 Q67040-S4423 07N60C3 SPU07N60C3 P-TO251-3-1 - 07N60C3 Maximum Ratings Parameter Symbol Continuous drain current ID Value Unit A TC = 25 °C 7.3 TC = 100 °C 4.6 Pulsed drain current, tp limited by Tjmax I D puls 21.9 Avalanche energy, single pulse EAS 230 Avalanche energy, repetitive tAR limited by Tjmax1) EAR 0.5 mJ I D = 5.5 A, VDD = 50 V I D = 7.3 A, VDD = 50 V Avalanche current, repetitive tAR limited by Tjmax I AR Reverse diode dv/dt dv/dt 7.3 6 A V/ns IS=7.3A, VDS=480V, T j=125°C V Gate source voltage static VGS ±20 Gate source voltage AC (f >1Hz) VGS ±30 Power dissipation, TC = 25°C Ptot 83 W Operating and storage temperature T j , T stg -55... +150 °C Page 1 2003-09-16 SPD07N60C3 SPU07N60C3 Final data Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit V DS = 480 V, I D = 7.3 A, Tj = 125 °C Thermal Characteristics Parameter Symbol min. typ. max. Thermal resistance, junction - case RthJC - - 1.5 Thermal resistance, junction - ambient, leaded RthJA - - 75 SMD version, device on PCB: RthJA @ min. footprint - - 75 @ 6 cm 2 cooling area 2) - - 50 - - 260 Soldering temperature, Tsold K/W °C 1.6 mm (0.063 in.) from case for 10s 3) Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS V GS=0V, ID=7.3A Values Unit min. typ. max. 600 - - - 700 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=350µΑ, VGS=VDS Zero gate voltage drain current I DSS V DS=600V, VGS=0V, Gate-source leakage current I GSS Drain-source on-state resistance RDS(on) Gate input resistance RG µA Tj=25°C, - 0.5 1 Tj=150°C - - 100 V GS=30V, VDS=0V - - 100 Ω V GS=10V, ID=4.6A, Tj=25°C - 0.54 0.6 Tj=150°C - 1.46 - f=1MHz, open Drain - 0.8 - Page 2 nA 2003-09-16 SPD07N60C3 SPU07N60C3 Final data Electrical Characteristics , at Tj = 25 °C, unless otherwise specified Parameter Transconductance Symbol g fs Conditions V DS≥2*I D*RDS(on)max, Values Unit min. typ. max. - 6 - S pF ID=4.6A Input capacitance Ciss V GS=0V, V DS=25V, - 790 - Output capacitance Coss f=1MHz - 260 - Reverse transfer capacitance Crss - 16 - - 30 - - 55 - Effective output capacitance, 4) Co(er) V GS=0V, energy related V DS=0V to 480V Effective output capacitance, 5) Co(tr) pF time related Turn-on delay time td(on) V DD=380V, V GS=0/13V, - 6 - Rise time tr ID=7.3A, RG=12Ω, - 3.5 - Turn-off delay time td(off) Tj=125°C - 60 100 Fall time tf - 7 15 - 3 - - 9.2 - - 21 27 - 5.5 - ns Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg V DD=480V, ID=7.3A V DD=480V, ID=7.3A, nC V GS=0 to 10V Gate plateau voltage V(plateau) V DD=480V, ID=7.3A V 1Repetitve avalanche causes additional power losses that can be calculated as P =EAR*f. AV 2Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 3Soldering temperature for TO-263: 220°C, reflow 4C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 5C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS. Page 3 2003-09-16 SPD07N60C3 SPU07N60C3 Final data Electrical Characteristics, at Tj = 25 °C, unless otherwise specified Parameter Symbol Inverse diode continuous IS Conditions TC=25°C Values Unit min. typ. max. - - 7.3 - - 21.9 A forward current Inverse diode direct current, I SM pulsed Inverse diode forward voltage VSD VGS =0V, I F=IS - 1 1.2 V Reverse recovery time t rr VR =480V, IF=IS , - 400 600 ns Reverse recovery charge Q rr diF/dt=100A/µs - 4 - µC Peak reverse recovery current I rrm - 28 - A Peak rate of fall of reverse di rr/dt - - 800 A/µs recovery current Typical Transient Thermal Characteristics Symbol Value Unit Symbol Value typ. Unit typ. Thermal resistance Thermal capacitance Rth1 0.024 Rth2 Cth1 0.00012 0.046 Cth2 0.0004578 Rth3 0.085 Cth3 0.000645 Rth4 0.308 Cth4 0.001867 Rth5 0.317 Cth5 0.004795 Rth6 0.112 Cth6 0.045 Tj K/W R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Page 4 2003-09-16 SPD07N60C3 SPU07N60C3 Final data 1 Power dissipation 2 Safe operating area Ptot = f (TC) ID = f ( V DS ) parameter : D = 0 , T C=25°C 100 10 2 SPD07N60C3 W A 80 10 1 ID Ptot 70 60 10 0 50 40 30 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 10 -1 20 10 0 0 20 40 60 80 100 120 °C 10 -2 0 10 160 10 1 10 2 10 V VDS TC 3 Transient thermal impedance 4 Typ. output characteristic ZthJC = f (t p) ID = f (VDS); Tj=25°C parameter: D = tp/T parameter: tp = 10 µs, VGS 1 10 24 K/W 20V 10V 8V A 7V ID ZthJC 10 0 10 -1 10 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse -2 16 6,5V 12 6V 8 5,5V 5V 4 4,5V 10 -3 -7 10 10 -6 10 -5 10 -4 10 -3 s tp 10 -1 Page 5 0 0 5 10 15 VDS 25 V 2003-09-16 3 SPD07N60C3 SPU07N60C3 Final data 5 Typ. output characteristic 6 Typ. drain-source on resistance ID = f (VDS); Tj=150°C RDS(on)=f(ID) parameter: tp = 10 µs, VGS parameter: Tj=150°C, V GS 10 13 A Ω 20V 8V 6.5V 11 RDS(on) ID 9 8 7 5V 6 5.5V 7 4.5V 8 6V 10 4V 6V 6.5V 8V 20V 5 6 5.5V 4 5V 5 4 3 4.5V 3 2 2 4V 1 1 0 0 2 4 6 8 0 0 10 12 14 16 18 20 22 V 25 2 4 6 8 10 12 VDS A 15 ID 7 Drain-source on-state resistance 8 Typ. transfer characteristics RDS(on) = f (Tj) ID= f ( VGS ); V DS≥ 2 x ID x RDS(on)max parameter : ID = 4.6 A, VGS = 10 V parameter: tp = 10 µs 24 Ω A 2.8 20 25°C 18 2.4 ID RDS(on) 3.4 SPD07N60C3 2 16 14 150°C 12 1.6 10 1.2 8 6 98% 0.8 typ 4 0.4 0 -60 2 -20 20 60 100 °C 180 Tj Page 6 0 0 2 4 6 8 10 12 14 16 V 20 VGS 2003-09-16 SPD07N60C3 SPU07N60C3 Final data 9 Typ. gate charge 10 Forward characteristics of body diode VGS = f (QGate ) IF = f (VSD) parameter: ID = 7.3 A pulsed parameter: Tj , tp = 10 µs 16 10 2 SPD07N60C3 V SPD07N60C3 A 10 1 0.2 VDS max 10 IF VGS 12 0.8 VDS max 8 6 10 0 Tj = 25 °C typ 4 Tj = 150 °C typ Tj = 25 °C (98%) 2 0 0 Tj = 150 °C (98%) 4 8 12 16 20 24 28 nC 10 -1 0 34 0.4 0.8 1.2 1.6 2 2.4 V QGate 3 VSD 11 Typ. drain current slope 12 Typ. switching time di/dt = f(R G), inductive load, Tj = 125°C t = f (RG ), inductive load, T j=125°C par.: VDS =380V, VGS=0/+13V, ID=7.3A par.: V DS=380V, VGS=0/+13V, ID=7.3 A 500 3000 ns A/µs 350 2000 t di/dt 400 250 1500 td(off) 200 di/dt(on) 1000 150 td(on) tf tr 100 500 di/dt(off) 0 0 300 20 50 40 60 80 100 Ω 130 RG Page 7 0 0 20 40 60 80 100 Ω 130 RG 2003-09-16 SPD07N60C3 SPU07N60C3 Final data 13 Typ. switching time 14 Typ. drain source voltage slope t = f (ID), inductive load, T j=125°C dv/dt = f(RG), inductive load, Tj = 125°C par.: VDS =380V, VGS=0/+13V, RG =12Ω par.: V DS=380V, VGS=0/+13V, ID=7.3A 100000 90 V/ns ns td(off) 80000 70 t dv/dt 60 70000 60000 50 50000 40 40000 30 tf td(on) tr 20 20000 10 0 0 dv/dt(on) 30000 dv/dt(off) 10000 1 2 3 4 5 6 A ID 0 0 8 20 40 60 80 100 Ω 130 RG 15 Typ. switching losses 16 Typ. switching losses E = f (ID), inductive load, Tj=125°C E = f(RG), inductive load, Tj=125°C par.: VDS =380V, VGS=0/+13V, RG =12Ω par.: V DS=380V, VGS=0/+13V, ID=7.3A 0.025 0.2 *) Eon includes SDP06S60 mWs diode commutation losses. mWs *) E on includes SDP06S60 diode commutation losses. 0.16 E E 0.14 0.015 0.12 0.1 Eoff Eoff 0.01 0.08 0.06 0.005 Eon* 0.04 Eon* 0.02 0 0 1 2 3 4 5 6 A ID 0 0 8 Page 8 20 40 60 80 100 Ω 130 RG 2003-09-16 SPD07N60C3 SPU07N60C3 Final data 17 Avalanche SOA 18 Avalanche energy IAR = f (tAR) EAS = f (Tj) par.: Tj ≤ 150 °C par.: ID = 5.5 A, V DD = 50 V 260 8 mJ A 220 Tj(START)=25°C 5 200 EAS IAR 6 Tj(START)=125°C 180 160 140 4 120 100 3 80 2 60 40 1 20 0 -3 10 10 -2 10 -1 10 0 10 1 10 2 µs 10 tAR 0 20 4 40 60 80 100 120 °C 160 Tj 19 Drain-source breakdown voltage 20 Avalanche power losses V(BR)DSS = f (Tj) PAR = f (f ) parameter: E AR=0.5mJ 720 SPD07N60C3 500 V PAR V(BR)DSS W 680 660 300 640 620 200 600 580 100 560 540 -60 -20 20 60 100 °C 180 Tj 0 4 10 10 5 MHz 10 f Page 9 2003-09-16 6 SPD07N60C3 SPU07N60C3 Final data 21 Typ. capacitances 22 Typ. Coss stored energy C = f (VDS) Eoss=f(VDS) parameter: V GS=0V, f=1 MHz 10 4 5.5 µJ pF 4.5 Ciss 10 3 C Eoss 4 3.5 3 10 2 2.5 Coss 2 10 1 1.5 Crss 1 0.5 10 0 0 100 200 300 400 V 600 VDS 0 0 100 200 300 400 V 600 VDS Definition of diodes switching characteristics Page 10 2003-09-16 SPD07N60C3 SPU07N60C3 Final data P-TO-252-3-1 (D-PAK) P-TO-251-3-1 (I-PAK) 6.5 +0.15 -0.10 2.3 +0.05 -0.10 0.9 +0.08 -0.04 0.15 max per side 9.3 ±0.4 C B 6.22 -0.2 1 ±0.1 A 5.4 ±0.1 0.5 +0.08 -0.04 3 x 0.75 ±0.1 2.28 4.56 1.0 0.25 M A B C GPT09050 All metal surfaces tin plated, except area of cut. Page 11 2003-09-16 Final data SPD07N60C3 SPU07N60C3 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 12 2003-09-16