INFINEON SPD07N60C3

SPD07N60C3
SPU07N60C3
Final data
Cool MOS™ Power Transistor
Feature
VDS @ Tjmax
650
V
RDS(on)
0.6
Ω
ID
7.3
A
• New revolutionary high voltage technology
• Worldwide best RDS(on) in TO-251 and TO-252
P-TO251-3-1
• Ultra low gate charge
P-TO252-3-1
• Periodic avalanche rated
• Extreme dv/dt rated
• High peak current capability
• Improved transconductance
Type
Package
Ordering Code
Marking
SPD07N60C3
P-TO252-3-1
Q67040-S4423
07N60C3
SPU07N60C3
P-TO251-3-1
-
07N60C3
Maximum Ratings
Parameter
Symbol
Continuous drain current
ID
Value
Unit
A
TC = 25 °C
7.3
TC = 100 °C
4.6
Pulsed drain current, tp limited by Tjmax
I D puls
21.9
Avalanche energy, single pulse
EAS
230
Avalanche energy, repetitive tAR limited by Tjmax1) EAR
0.5
mJ
I D = 5.5 A, VDD = 50 V
I D = 7.3 A, VDD = 50 V
Avalanche current, repetitive tAR limited by Tjmax I AR
Reverse diode dv/dt
dv/dt
7.3
6
A
V/ns
IS=7.3A, VDS=480V, T j=125°C
V
Gate source voltage static
VGS
±20
Gate source voltage AC (f >1Hz)
VGS
±30
Power dissipation, TC = 25°C
Ptot
83
W
Operating and storage temperature
T j , T stg
-55... +150
°C
Page 1
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
Maximum Ratings
Parameter
Symbol
Drain Source voltage slope
dv/dt
Value
Unit
50
V/ns
Values
Unit
V DS = 480 V, I D = 7.3 A, Tj = 125 °C
Thermal Characteristics
Parameter
Symbol
min.
typ.
max.
Thermal resistance, junction - case
RthJC
-
-
1.5
Thermal resistance, junction - ambient, leaded
RthJA
-
-
75
SMD version, device on PCB:
RthJA
@ min. footprint
-
-
75
@ 6 cm 2 cooling area 2)
-
-
50
-
-
260
Soldering temperature,
Tsold
K/W
°C
1.6 mm (0.063 in.) from case for 10s 3)
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter
Symbol
Conditions
Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA
Drain-Source avalanche
V(BR)DS V GS=0V, ID=7.3A
Values
Unit
min.
typ.
max.
600
-
-
-
700
-
2.1
3
3.9
V
breakdown voltage
Gate threshold voltage
VGS(th)
ID=350µΑ, VGS=VDS
Zero gate voltage drain current
I DSS
V DS=600V, VGS=0V,
Gate-source leakage current
I GSS
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
µA
Tj=25°C,
-
0.5
1
Tj=150°C
-
-
100
V GS=30V, VDS=0V
-
-
100
Ω
V GS=10V, ID=4.6A,
Tj=25°C
-
0.54
0.6
Tj=150°C
-
1.46
-
f=1MHz, open Drain
-
0.8
-
Page 2
nA
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
Electrical Characteristics , at Tj = 25 °C, unless otherwise specified
Parameter
Transconductance
Symbol
g fs
Conditions
V DS≥2*I D*RDS(on)max,
Values
Unit
min.
typ.
max.
-
6
-
S
pF
ID=4.6A
Input capacitance
Ciss
V GS=0V, V DS=25V,
-
790
-
Output capacitance
Coss
f=1MHz
-
260
-
Reverse transfer capacitance
Crss
-
16
-
-
30
-
-
55
-
Effective output capacitance, 4) Co(er)
V GS=0V,
energy related
V DS=0V to 480V
Effective output capacitance, 5) Co(tr)
pF
time related
Turn-on delay time
td(on)
V DD=380V, V GS=0/13V,
-
6
-
Rise time
tr
ID=7.3A, RG=12Ω,
-
3.5
-
Turn-off delay time
td(off)
Tj=125°C
-
60
100
Fall time
tf
-
7
15
-
3
-
-
9.2
-
-
21
27
-
5.5
-
ns
Gate Charge Characteristics
Gate to source charge
Qgs
Gate to drain charge
Qgd
Gate charge total
Qg
V DD=480V, ID=7.3A
V DD=480V, ID=7.3A,
nC
V GS=0 to 10V
Gate plateau voltage
V(plateau) V DD=480V, ID=7.3A
V
1Repetitve avalanche causes additional power losses that can be calculated as P =EAR*f.
AV
2Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
3Soldering temperature for TO-263: 220°C, reflow
4C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS.
5C
o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS.
Page 3
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
Electrical Characteristics, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Inverse diode continuous
IS
Conditions
TC=25°C
Values
Unit
min.
typ.
max.
-
-
7.3
-
-
21.9
A
forward current
Inverse diode direct current,
I SM
pulsed
Inverse diode forward voltage
VSD
VGS =0V, I F=IS
-
1
1.2
V
Reverse recovery time
t rr
VR =480V, IF=IS ,
-
400
600
ns
Reverse recovery charge
Q rr
diF/dt=100A/µs
-
4
-
µC
Peak reverse recovery current
I rrm
-
28
-
A
Peak rate of fall of reverse
di rr/dt
-
-
800
A/µs
recovery current
Typical Transient Thermal Characteristics
Symbol
Value
Unit
Symbol
Value
typ.
Unit
typ.
Thermal resistance
Thermal capacitance
Rth1
0.024
Rth2
Cth1
0.00012
0.046
Cth2
0.0004578
Rth3
0.085
Cth3
0.000645
Rth4
0.308
Cth4
0.001867
Rth5
0.317
Cth5
0.004795
Rth6
0.112
Cth6
0.045
Tj
K/W
R th1
R th,n
T case
Ws/K
E xternal H eatsink
P tot (t)
C th1
C th2
C th,n
T am b
Page 4
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
1 Power dissipation
2 Safe operating area
Ptot = f (TC)
ID = f ( V DS )
parameter : D = 0 , T C=25°C
100
10 2
SPD07N60C3
W
A
80
10 1
ID
Ptot
70
60
10 0
50
40
30
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
10 -1
20
10
0
0
20
40
60
80
100
120
°C
10 -2 0
10
160
10
1
10
2
10
V
VDS
TC
3 Transient thermal impedance
4 Typ. output characteristic
ZthJC = f (t p)
ID = f (VDS); Tj=25°C
parameter: D = tp/T
parameter: tp = 10 µs, VGS
1
10
24
K/W
20V
10V
8V
A
7V
ID
ZthJC
10 0
10 -1
10
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
-2
16
6,5V
12
6V
8
5,5V
5V
4
4,5V
10 -3 -7
10
10
-6
10
-5
10
-4
10
-3
s
tp
10
-1
Page 5
0
0
5
10
15
VDS
25
V
2003-09-16
3
SPD07N60C3
SPU07N60C3
Final data
5 Typ. output characteristic
6 Typ. drain-source on resistance
ID = f (VDS); Tj=150°C
RDS(on)=f(ID)
parameter: tp = 10 µs, VGS
parameter: Tj=150°C, V GS
10
13
A
Ω
20V
8V
6.5V
11
RDS(on)
ID
9
8
7
5V
6
5.5V
7
4.5V
8
6V
10
4V
6V
6.5V
8V
20V
5
6
5.5V
4
5V
5
4
3
4.5V
3
2
2
4V
1
1
0
0
2
4
6
8
0
0
10 12 14 16 18 20 22 V 25
2
4
6
8
10
12
VDS
A 15
ID
7 Drain-source on-state resistance
8 Typ. transfer characteristics
RDS(on) = f (Tj)
ID= f ( VGS ); V DS≥ 2 x ID x RDS(on)max
parameter : ID = 4.6 A, VGS = 10 V
parameter: tp = 10 µs
24
Ω
A
2.8
20
25°C
18
2.4
ID
RDS(on)
3.4
SPD07N60C3
2
16
14
150°C
12
1.6
10
1.2
8
6
98%
0.8
typ
4
0.4
0
-60
2
-20
20
60
100
°C
180
Tj
Page 6
0
0
2
4
6
8
10
12
14
16
V 20
VGS
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
9 Typ. gate charge
10 Forward characteristics of body diode
VGS = f (QGate )
IF = f (VSD)
parameter: ID = 7.3 A pulsed
parameter: Tj , tp = 10 µs
16
10 2
SPD07N60C3
V
SPD07N60C3
A
10 1
0.2 VDS max
10
IF
VGS
12
0.8 VDS max
8
6
10 0
Tj = 25 °C typ
4
Tj = 150 °C typ
Tj = 25 °C (98%)
2
0
0
Tj = 150 °C (98%)
4
8
12
16
20
24
28 nC
10 -1
0
34
0.4
0.8
1.2
1.6
2
2.4 V
QGate
3
VSD
11 Typ. drain current slope
12 Typ. switching time
di/dt = f(R G), inductive load, Tj = 125°C
t = f (RG ), inductive load, T j=125°C
par.: VDS =380V, VGS=0/+13V, ID=7.3A
par.: V DS=380V, VGS=0/+13V, ID=7.3 A
500
3000
ns
A/µs
350
2000
t
di/dt
400
250
1500
td(off)
200
di/dt(on)
1000
150
td(on)
tf
tr
100
500
di/dt(off)
0
0
300
20
50
40
60
80
100
Ω 130
RG
Page 7
0
0
20
40
60
80
100
Ω 130
RG
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
13 Typ. switching time
14 Typ. drain source voltage slope
t = f (ID), inductive load, T j=125°C
dv/dt = f(RG), inductive load, Tj = 125°C
par.: VDS =380V, VGS=0/+13V, RG =12Ω
par.: V DS=380V, VGS=0/+13V, ID=7.3A
100000
90
V/ns
ns
td(off)
80000
70
t
dv/dt
60
70000
60000
50
50000
40
40000
30
tf
td(on)
tr
20
20000
10
0
0
dv/dt(on)
30000
dv/dt(off)
10000
1
2
3
4
5
6
A
ID
0
0
8
20
40
60
80
100
Ω 130
RG
15 Typ. switching losses
16 Typ. switching losses
E = f (ID), inductive load, Tj=125°C
E = f(RG), inductive load, Tj=125°C
par.: VDS =380V, VGS=0/+13V, RG =12Ω
par.: V DS=380V, VGS=0/+13V, ID=7.3A
0.025
0.2
*) Eon includes SDP06S60
mWs
diode commutation losses.
mWs
*) E on includes SDP06S60
diode commutation losses.
0.16
E
E
0.14
0.015
0.12
0.1
Eoff
Eoff
0.01
0.08
0.06
0.005
Eon*
0.04
Eon*
0.02
0
0
1
2
3
4
5
6
A
ID
0
0
8
Page 8
20
40
60
80
100
Ω 130
RG
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
17 Avalanche SOA
18 Avalanche energy
IAR = f (tAR)
EAS = f (Tj)
par.: Tj ≤ 150 °C
par.: ID = 5.5 A, V DD = 50 V
260
8
mJ
A
220
Tj(START)=25°C
5
200
EAS
IAR
6
Tj(START)=125°C
180
160
140
4
120
100
3
80
2
60
40
1
20
0 -3
10
10
-2
10
-1
10
0
10
1
10
2
µs 10
tAR
0
20
4
40
60
80
100
120
°C
160
Tj
19 Drain-source breakdown voltage
20 Avalanche power losses
V(BR)DSS = f (Tj)
PAR = f (f )
parameter: E AR=0.5mJ
720
SPD07N60C3
500
V
PAR
V(BR)DSS
W
680
660
300
640
620
200
600
580
100
560
540
-60
-20
20
60
100
°C
180
Tj
0 4
10
10
5
MHz
10
f
Page 9
2003-09-16
6
SPD07N60C3
SPU07N60C3
Final data
21 Typ. capacitances
22 Typ. Coss stored energy
C = f (VDS)
Eoss=f(VDS)
parameter: V GS=0V, f=1 MHz
10 4
5.5
µJ
pF
4.5
Ciss
10 3
C
Eoss
4
3.5
3
10 2
2.5
Coss
2
10 1
1.5
Crss
1
0.5
10 0
0
100
200
300
400
V
600
VDS
0
0
100
200
300
400
V
600
VDS
Definition of diodes switching characteristics
Page 10
2003-09-16
SPD07N60C3
SPU07N60C3
Final data
P-TO-252-3-1 (D-PAK)
P-TO-251-3-1 (I-PAK)
6.5 +0.15
-0.10
2.3 +0.05
-0.10
0.9 +0.08
-0.04
0.15 max
per side
9.3 ±0.4
C
B
6.22 -0.2
1 ±0.1
A
5.4 ±0.1
0.5 +0.08
-0.04
3 x 0.75 ±0.1
2.28
4.56
1.0
0.25
M
A B C
GPT09050
All metal surfaces tin plated, except area of cut.
Page 11
2003-09-16
Final data
SPD07N60C3
SPU07N60C3
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 12
2003-09-16