Previous Datasheet Index Next Data Sheet PD - 5.029 CPU165MU Ultra-Fast IGBT IGBT SIP MODULE Features • • • • 1,2 Fully isolated printed circuit board mount package Switching-loss rating includes all "tail" losses TM HEXFRED soft ultrafast diodes Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve 4 5 Q1 D1 6,7 9 Product Summary Output Current in a Typical 20 kHz Motor Drive 10 ARMS with T C = 90°C, T J = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 80% (See Figure 1) Q2 D2 11,12 Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-1 Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM IF @ T C = 100°C IFM VGE VISOL PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 33 17 100 100 15 100 ±20 2500 83 33 -40 to +150 V A V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55-0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink,flat,greased surface Weight of module C-733 To Order Typ. Max. — — 0.1 20 (0.7) 1.5 2.0 — — Units °C/W g (oz) Revision 1 Previous Datasheet Index Next Data Sheet CPU165MU Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V(BR)CES ∆V(BR)CES/∆TJ Min. Typ. Max. Units Conditions 600 — — V VGE = 0V, I C = 250µA — 0.60 — V/°C VGE = 0V, IC = 1.0mA — 1.8 2.3 IC = 17A V GE = 15V — 2.2 — V IC = 33A See Fig. 2, 5 — 1.6 — IC = 17A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -13 — mV/°C VCE = VGE, IC = 250µA 16 24 — S VCE = 100V, I C = 27A — — 250 µA VGE = 0V, V CE = 600V — — 6500 VGE = 0V, V CE = 600V, T J = 150°C — 1.3 1.7 V IC = 25A See Fig. 13 — 1.2 1.5 IC = 25A, T J = 150°C — — ±500 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During t b Min. — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 108 17 52 23 28 100 45 0.76 0.26 1.0 24 27 180 130 3.7 2900 330 41 50 105 4.5 8.0 112 420 250 160 Max. Units Conditions 140 IC = 27A 21 nC VCC = 400V 70 See Fig. 8 — TJ = 25°C — ns IC = 27A, V CC = 480V 200 VGE = 15V, R G = 5.0Ω 140 Energy losses include "tail" and — diode reverse recovery. — mJ See Fig. 9, 10, 11, 18 2.0 — TJ = 150°C, See Fig. 9, 10, 11, 18 — ns IC = 27A, V CC = 480V — VGE = 15V, R G = 5.0Ω — Energy losses include "tail" and — mJ diode reverse recovery. — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 75 ns TJ = 25°C See Fig. 160 TJ = 125°C 14 I F = 25A 10 A TJ = 25°C See Fig. 15 TJ = 125°C 15 V R = 200V 375 nC TJ = 25°C See Fig. 1200 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 20 ) VCC=80%(V CES), VGE=20V, L=10µH, R G= 5.0Ω, ( See fig. 19 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-734 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet 24 7.4 16 5.0 8 2.5 TC = 90°C TJ = 125°C Power Factor = 0.8 Modulation Depth = 0.8 VC C = 60% of Rated Voltage Total O utpu t P ow e r (kW ) Lo ad C urrent (A ) CPU165MU 0 0 0.1 1 10 100 f, F re quency (kH z) Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave 1000 IC , Collector-to-Emitter Current (A) I C , Collector-to-E m itter C urrent (A) 1000 TJ = 2 5°C 100 TJ = 1 50 °C 10 V G E = 15 V 20 µs P UL S E W ID TH 1 0.1 1 100 TJ = 150°C TJ = 25°C 10 VCC = 100V 5µs PULSE WIDTH 1 5 10 10 15 VGE, Gate-to-Emitter Voltage (V) V C E , C o llector-to-Em itter V oltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-735 To Order 20 S Previous Datasheet Index Next Data Sheet CPU165MU 3.0 V G E = 15 V VC E , Co lle ctor-to-E m itter V oltage (V ) M aximum D C Collector Current (A ) 60 50 40 30 20 10 0 V G E = 15 V 80 µs P UL S E W ID TH I C = 5 4A 2.5 2.0 I C = 27 A 1.5 I C = 14 A 1.0 25 50 75 100 125 150 -60 T C , C ase Tem perature (°C ) -40 -20 0 20 40 60 80 100 120 140 160 TC , C ase Tem perature (°C ) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T herm al Response (Z th JC ) 1 D = 0 .5 0 0.2 0 0.1 0.1 0 PD M 0 .05 0.0 2 t SIN G LE P UL SE (TH ER MA L R E SP O NS E ) t2 N o te s: 1 . D u ty fa c to r D = t 0.0 1 0.01 0.00001 1 1 / t 2 2 . P e a k TJ = P D M x Z thJ C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D uration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case C-736 To Order 10 Previous Datasheet Index Next Data Sheet CPU165MU 7000 VG E , G ate-to-E m itter V oltage (V ) 6000 C , C apacitance (pF ) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc V C E = 4 80 V I C = 2 7A 16 5000 12 4000 Cies 3000 Coes 2000 1000 8 4 Cres 0 0 1 10 1 00 0 30 V C E , C ollector-to-E m itter V oltage (V ) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage VC C VG E TC IC 90 120 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 10 = 48 0 V = 15 V = 25 °C = 2 7A To ta l S w itc hing Lo sse s (m J) Total S w itching Losses (m J) 2 .5 0 60 Q g , Total G ate C harge (nC ) 2 .2 5 2 .0 0 1 .7 5 1 .5 0 R G = 2 .0 Ω V GE = 1 5V V CC = 48 0V I C = 54A I C = 27 A 1 I C = 14 A 0.1 0 10 20 30 40 50 -60 R G , G ate R esistance ( Ω ) -40 -20 0 20 40 60 80 100 120 140 16 0 TC , C ase Tem perature (°C ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-737 To Order Previous Datasheet Index Next Data Sheet CPU165MU 5.0 1000 = 2 .0 Ω = 150°C = 4 80 V = 15 V I C , C ollec tor-to -E m itter C u rre nt (A ) RG TC V CC VGE 4.0 3.0 2.0 1.0 VGGE E= 20 V T J = 12 5°C S A FE O P E R A TIN G A R E A 100 10 0.0 1 0 10 20 30 40 50 60 1 10 I C , C ollecto r-to-E m itter C urrent (A ) 100 V C E , C o lle cto r-to-E m itte r V olta g e (V ) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Instantaneous Forward Current - I F (A) Total Sw itching Losses (m J ) 6.0 TJ = 150°C TJ = 125°C 10 1 0.6 TJ = 25°C 1.0 1.4 1.8 2.2 2.6 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current C-738 To Order 1000 Previous Datasheet Index Next Data Sheet CPU165MU 100 140 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 IF = 50A 80 I F = 50A I IRRM - (A) t rr - (ns) 100 I F = 25A I F = 25A 10 I F = 10A IF = 10A 60 40 20 100 1 100 1000 di f /dt - (A/µs) 1000 di f /dt - (A/µs) Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 10000 1500 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) Q RR - (nC) 1200 900 IF = 50A 600 IF = 25A 1000 IF = 10A I F = 25A 300 IF = 50A I F = 10A 0 100 1000 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt 100 100 di f /dt - (A/µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt C-739 To Order 1000 Previous Datasheet Index Next Data Sheet CPU165MU 90% Vge +Vge Same type device as D.U.T. Vce Ic 90% Ic 10% Vce Ic 430µF 80% of Vce 5% Ic D.U.T. td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Fig.18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode) , trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf trr GATE VOLTAGE D.U.T. 10% +Vg Qrr = Ic ∫ trr id dt tx +Vg tx 10% Vcc 10% Irr Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic Ipk 90% Ic Ic DIODE RECOVERY WAVEFORMS tr td(on) t1 5% Vce ∫ t2 Eon = Vce ie dt t1 DIODE REVERSE RECOVERY ENERGY t2 t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E rec, trr, Qrr, Irr Defining E on, td(on), tr Refer to Section D for the following: Appendix D: Section D - page D-6 Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a Fig. 19 - Clamped Inductive Load Test Circuit Fig. 20 - Pulsed Collector Current Test Circuit Package Outline 4 - IMS-1 Package (10 pins) C-740 To Order Section D - page D-13