Bulletin I-27256 09/06 CPV364M4KPbF Short Circuit Rated UltraFast IGBT IGBT SIP MODULE 1 Features • Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10μs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) • Totally Lead-Free and RoHs Compliant 3 D1 Q1 9 D3 Q3 4 6 D2 Q2 12 D5 Q5 15 10 D4 Q4 7 18 16 D6 Q6 13 19 Product Summary Output Current in a Typical 20 kHz Motor Drive 11 ARMS per phase (3.1 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1) Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Isolated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current c Clamped Inductive Load Current d Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 min Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 24 13 48 48 9.3 ±20 2500 63 25 -55 to +150 V A μs V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in ( 0.55-0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt www.irf.com Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. Max. ––– ––– 0.10 20 (0.7) 2.2 3.7 ––– ––– Units °C/W g (oz) 1 CPV364M4KPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltagee ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES VGE(th) gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance f Zero Gate Voltage Collector Current V FM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current ΔVGE(th)/ΔTJ Min. 600 ––– ––– ––– ––– 3.0 ––– 11 ––– ––– ––– ––– ––– Typ. ––– 0.63 1.80 1.80 1.56 ––– -13 18 ––– ––– 1.3 1.2 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250μA ––– V/°C VGE = 0V, IC = 1.0mA 2.3 IC = 13A VGE = 15V ––– V IC = 24A See Fig. 2, 5 1.73 IC = 13A, T J = 150°C 6.0 VCE = VGE, IC = 250μA ––– mV/°C VCE = VGE, IC = 250μA ––– S VCE = 100V, IC = 10A 250 μA VGE = 0V, VCE = 600V 3500 V GE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 15A See Fig. 13 1.6 IC = 15A, T J = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During t b 2 Min. — — — — — — — — — — 10 Typ. 110 14 49 50 30 110 91 0.56 0.28 0.84 — — — — — — — — — — — — — — — — — — 47 30 250 150 1.28 7.5 1600 130 55 42 74 4.0 6.5 80 220 188 160 Max. Units Conditions 170 IC = 13A 21 nC VCC = 400V See Fig.8 74 V GE = 15V — — TJ = 25°C ns 170 IC = 13A, V CC = 480V 140 VGE = 15V, RG = 10Ω — Energy losses include "tail" — mJ and diode reverse recovery 1.1 See Fig. 9,10, 18 — μs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω , V CPK < 500V — TJ = 150°C, See Fig. 11,18 — IC = 13A, V CC = 480V ns — VGE = 15V, RG = 10Ω — Energy losses include "tail" — mJ and diode reverse recovery — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 15A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 16 di/dt = 200Aμs 600 TJ = 125°C — A/μs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com CPV364M4KPbF 5.27 18 Tc = 90°C Tj = 125°C Power Factor = 0.8 Modulation Depth = 1.15 Vcc = 50% of Rated Voltage LOAD CURRENT (A) 14 4.68 4.10 12 3.51 10 2.93 8 2.34 6 1.76 4 1.17 2 0.59 Total Output Power (kW) 16 0.00 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 150 °C 10 1 TJ = 25 °C V GE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 °C 10 TJ = 25 °C 1 V CC = 50V 5µs PULSE WIDTH 5 6 7 8 9 10 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 CPV364M4KPbF 4.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current (A) 160 140 120 100 80 DC 60 Square wave (D=0.50) 80% rated Vr applied 40 20 see note (2) 0 0 5 10 15 20 TC, Case Temperature (°C) 25 VGE = 15V 80 us PULSE WIDTH 3.0 IC = 26A 2.0 IC = 13A IC = 6.5A 1.0 -60 -40 -20 30 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 P DM 0.05 0.1 t 0.02 0.01 0.01 0.00001 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 /t 1 t2 2 2. Peak TJ = P DM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com CPV364M4KPbF 3000 VGE , Gate-to-Emitter Voltage (V) 2500 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 2000 Cies 1500 1000 500 Coes Cres 16 12 8 4 0 0 1 10 0 100 Total Switching Losses (mJ) Total Switching Losses (mJ) 10 VCC = 480V VGE = 15V TJ = 25 ° C I C = 13A 1.0 0.5 10 20 30 40 50 RGRG , Gate Resistance , Gate Resistance(Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 60 80 100 120 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 20 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 1.5 VCC = 400V I C = 13A RG = 10Ω Ohm VGE = 15V VCC = 480V IC = 26 A IC = 13 A 1 IC = 6.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 CPV364M4KPbF RG TJ VCC VGE 1000 10Ω = Ohm = 150 °C = 480V = 15V IC , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20 25 VGE = 20V TJ = 125°C 100 SAFE OPERATING AREA 10 A 1 30 1 I C , Collector-to-emitter Current (A) 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 100 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com CPV364M4KPbF 100 100 VR = 200V TJ = 125°C TJ = 25°C VR= 200V T J = 125°C T J = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/µs) 1 100 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 CPV364M4KPbF 90% Vge +Vge Same type device as D.U.T. Vce Ic 90% Ic 10% Vce Ic 5% Ic 430µF 80% of Vce D.U.T. td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic +Vg tx 10% Vcc DUT VOLTAGE AND CURRENT Vce Vcc 10% Ic 90% Ic tr td(on) Ipk Vpk 10% Irr Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 t2 Eon = Vce ie dt t1 ∫ t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ trr id dt tx t4 Erec = Vd id dt t3 ∫ t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com CPV364M4KPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 CPV364M4KPbF Notes: c Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) d VCC=80%(VCES), VGE=20V, L=10μH, RG = 10Ω (Figure 19) e Pulse width ≤ 80μs; duty factor ≤ 0.1%. f Pulse width 5.0μs, single shot. Case Outline — IMS-2 IMS-2 Package Outline (13 Pins) Dimensions in Millimeters and (inches) Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 09/06 10 www.irf.com