IRF CPV364M4KPBF

Bulletin I-27256 09/06
CPV364M4KPbF
Short Circuit Rated UltraFast IGBT
IGBT SIP MODULE
1
Features
• Short Circuit Rated UltraFast: Optimized for high
operating frequencies >5.0 kHz , and Short Circuit
Rated to 10μs @ 125°C, VGE = 15V
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
• Totally Lead-Free and RoHs Compliant
3
D1
Q1
9
D3
Q3
4
6
D2
Q2
12
D5
Q5
15
10
D4
Q4
7
18
16
D6
Q6
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive
11 ARMS per phase (3.1 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Isolated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at
a premium.
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current c
Clamped Inductive Load Current d
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 min
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
24
13
48
48
9.3
±20
2500
63
25
-55 to +150
V
A
μs
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in ( 0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
www.irf.com
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.10
20 (0.7)
2.2
3.7
–––
–––
Units
°C/W
g (oz)
1
CPV364M4KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltagee
ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
V(BR)CES
VGE(th)
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance f
Zero Gate Voltage Collector Current
V FM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
ΔVGE(th)/ΔTJ
Min.
600
–––
–––
–––
–––
3.0
–––
11
–––
–––
–––
–––
–––
Typ.
–––
0.63
1.80
1.80
1.56
–––
-13
18
–––
–––
1.3
1.2
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250μA
––– V/°C VGE = 0V, IC = 1.0mA
2.3
IC = 13A
VGE = 15V
–––
V
IC = 24A
See Fig. 2, 5
1.73
IC = 13A, T J = 150°C
6.0
VCE = VGE, IC = 250μA
––– mV/°C VCE = VGE, IC = 250μA
–––
S
VCE = 100V, IC = 10A
250
μA
VGE = 0V, VCE = 600V
3500
V GE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 15A
See Fig. 13
1.6
IC = 15A, T J = 150°C
±100 n A
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During t b
2
Min.
—
—
—
—
—
—
—
—
—
—
10
Typ.
110
14
49
50
30
110
91
0.56
0.28
0.84
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
47
30
250
150
1.28
7.5
1600
130
55
42
74
4.0
6.5
80
220
188
160
Max. Units
Conditions
170
IC = 13A
21
nC VCC = 400V See Fig.8
74
V GE = 15V
—
—
TJ = 25°C
ns
170
IC = 13A, V CC = 480V
140
VGE = 15V, RG = 10Ω
—
Energy losses include "tail"
—
mJ and diode reverse recovery
1.1
See Fig. 9,10, 18
—
μs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 10Ω , V CPK < 500V
—
TJ = 150°C, See Fig. 11,18
—
IC = 13A, V CC = 480V
ns
—
VGE = 15V, RG = 10Ω
—
Energy losses include "tail"
—
mJ and diode reverse recovery
—
nH Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 15A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
VR = 200V
180
nC TJ = 25°C See Fig.
16
di/dt = 200Aμs
600
TJ = 125°C
—
A/μs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
CPV364M4KPbF
5.27
18
Tc = 90°C
Tj = 125°C
Power Factor = 0.8
Modulation Depth = 1.15
Vcc = 50% of Rated Voltage
LOAD CURRENT (A)
14
4.68
4.10
12
3.51
10
2.93
8
2.34
6
1.76
4
1.17
2
0.59
Total Output Power (kW)
16
0.00
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 150 °C
10
1
TJ = 25 °C
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
8
9
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
CPV364M4KPbF
4.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current (A)
160
140
120
100
80
DC
60
Square wave (D=0.50)
80% rated Vr applied
40
20
see note (2)
0
0
5
10
15
20
TC, Case Temperature (°C)
25
VGE = 15V
80 us PULSE WIDTH
3.0
IC = 26A
2.0
IC = 13A
IC = 6.5A
1.0
-60 -40 -20
30
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
P
DM
0.05
0.1
t
0.02
0.01
0.01
0.00001
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/t
1
t2
2
2. Peak TJ = P DM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
CPV364M4KPbF
3000
VGE , Gate-to-Emitter Voltage (V)
2500
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
2000
Cies
1500
1000
500
Coes
Cres
16
12
8
4
0
0
1
10
0
100
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
VCC = 480V
VGE = 15V
TJ = 25 ° C
I C = 13A
1.0
0.5
10
20
30
40
50
RGRG
, Gate
Resistance
, Gate
Resistance(Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
60
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
20
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
1.5
VCC = 400V
I C = 13A
RG = 10Ω
Ohm
VGE = 15V
VCC = 480V
IC = 26 A
IC = 13 A
1
IC = 6.5 A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
CPV364M4KPbF
RG
TJ
VCC
VGE
1000
10Ω
= Ohm
= 150 °C
= 480V
= 15V
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
4.0
3.0
2.0
1.0
0.0
0
5
10
15
20
25
VGE = 20V
TJ = 125°C
100
SAFE OPERATING AREA
10
A
1
30
1
I C , Collector-to-emitter Current (A)
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
100
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
CPV364M4KPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR= 200V
T J = 125°C
T J = 25°C
80
I IRRM - (A)
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15A
10
I F = 5.0A
40
I F = 5.0A
20
100
di f /dt - (A/µs)
1
100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
800
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
600
Q RR - (nC)
IF = 30A
400
I F = 15A
IF = 5.0A
I F = 5.0A
I F = 15A
I F = 30A
200
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
CPV364M4KPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
+Vg
tx
10% Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vcc
10% Ic
90% Ic
tr
td(on)
Ipk
Vpk
10% Irr
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
t2
Eon = Vce ie dt
t1
∫
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
trr
id dt
tx
t4
Erec = Vd id dt
t3
∫
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
CPV364M4KPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test
Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
CPV364M4KPbF
Notes:
c Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
d VCC=80%(VCES), VGE=20V, L=10μH, RG = 10Ω (Figure 19)
e Pulse width ≤ 80μs; duty factor ≤ 0.1%.
f Pulse width 5.0μs, single shot.
Case Outline — IMS-2
IMS-2 Package Outline (13 Pins)
Dimensions in Millimeters and (inches)
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level and Lead-Free.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 09/06
10
www.irf.com