PD-5.045B CPV362M4K PRELIMINARY Short Circuit Rated UltraFast IGBT IGBT SIP MODULE Features 1 • Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses TM • HEXFRED soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve 3 D1 Q1 9 D3 Q3 4 6 D2 Q2 12 D5 Q5 15 10 D4 Q4 7 18 16 D6 Q6 13 19 Product Summary Output Current in a Typical 20 kHz Motor Drive 4.3 ARMS per phase (1.27 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1) Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw Max. Units 600 5.7 3.0 11 11 3.4 11 10 ± 20 2500 23 9.1 -40 to +150 V A µs V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55 - 0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. Max. ––– ––– 0.1 20 (0.7) 5.5 9.0 ––– ––– Units °C/W g (oz) 2/24/98 CPV362M4K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– ∆V(BR)CES/∆TJ Temp. Coeff. of Breakdown Voltage ––– 0.49 VCE(on) Collector-to-Emitter Saturation Voltage ––– 1.70 ––– 1.98 ––– 1.65 VGE(th) Gate Threshold Voltage 3.0 ––– ∆VGE(th)/∆TJ Temp. Coeff. of Threshold Voltage ––– -13 gfe Forward Transconductance 2.0 3.0 ICES Zero Gate Voltage Collector Current ––– ––– ––– ––– Diode Forward Voltage Drop ––– 1.4 V FM ––– 1.3 IGES Gate-to-Emitter Leakage Current ––– ––– V(BR)CES Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 1.93 IC = 3.0A VGE = 15V ––– V IC = 5.7A See Fig. 2, 5 ––– IC = 3.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 12A 250 µA VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8A See Fig. 13 1.6 IC = 8A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 10 Typ. 38 5.2 18 23 54 125 120 0.14 0.07 0.21 ––– td(on) tr td(off) tf Ets Cies Coes Cres t rr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 25 51 308 166 0.33 450 61 14 37 55 3.5 4.5 65 124 240 210 di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Max. Units Conditions 57 IC = 3.0A 8 nC VCC = 400V 27 See Fig. 8 ––– TJ = 25°C ––– ns IC = 3.0A, VCC = 480V 188 VGE = 15V, RG = 51Ω 180 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 18 0.26 ––– µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 51Ω, VCPK < 500V ––– TJ = 150°C, See Fig. 10, 11, 18 ––– ns IC =3.0A, VCC = 480V ––– VGE = 15V, RG = 51Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt=200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 CPV362M4K 7.0 2.05 T c = 9 0°C T j = 1 25 °C P ow er F ac tor = 0 .8 M od ulatio n D ep th = 1 .15 V c c = 50 % of R ated V oltag e 1.76 5.0 1.46 4.0 1.17 3.0 0.88 2.0 0.59 1.0 0.29 0.00 100 0.0 0.1 1 Total Output Power (kW) LOAD CURRENT (A) 6.0 10 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 10 TJ = 150 o C TJ = 25 o C V CC = 50V 5µs PULSE WIDTH 1 5 10 15 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 20 CPV362M4K 2.5 VGE = 1 5V VCE , Collector-to-Emitter Voltage(V) M a xim um D C C o lle ctor C u rre n t (A ) 6 4 2 A 0 25 50 75 100 125 IC = 6A IC = 3A 2.0 IC = 1.5 A 1.5 1.0 -60 -40 -20 150 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C) TC , C a s e T e m p e ra tu re (°C ) Fig. 4 - Maximum Collector Current vs. Case Temperature VGE = 15V 80 us PULSE WIDTH Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T h e rm a l R e sp o n s e (Z thJC ) 10 D = 0 .5 0 0 .20 1 0 .10 0 .0 5 0 .0 2 0 .0 1 PD M 0.1 t S IN G L E P U L S E (T H E R M A L R E S P O N S E ) t N o te s : 1 . D u ty fac tor D = t 0.01 0.000 01 1 1 /t 2 2 2 . P e a k T J = P D M x Z th J C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R e c ta n g u lar P u ls e D u ra tio n (s e c ) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 10 CPV362M4K VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 600 Cies 400 200 Coes 16 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 800 VCC = 400V I C = 3A 12 8 4 Cres 0 0 1 10 0 100 1 V CC = 480V V GE = 15V TJ = 25 ° C 0.8 I C = 6.0A Total Switching Losses (mJ) Total Switching Losses (mJ) 1.0 0.6 0.4 0.2 0.0 10 20 30 40 RG RG,, Gate Gate Resistance Resistance ( (Ohm) Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 20 30 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 10 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 50 Ω 51 RG = 10Ω 51Ohm VGE = 15V VCC = 480V IC = 6A IC = 3A IC = 1.5 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature °( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature CPV362M4K 100 = 51Ohm Ω = 150 ° C = 480V = 15V I C , C o lle cto r-to -E m itte r C u rre n t (A ) RG TJ VCC VGE 0.6 0.4 0.2 V G E = 20 V T J = 12 5 °C 10 S A FE O PE R A TIN G A R E A 1 A 0.1 0.0 1 2 3 4 5 6 1 7 10 100 VC E , C o lle cto r-to -E m itte r V o lta g e (V ) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 In sta n ta n e o u s F o rw a rd C u rre n t - I F (A ) Total Switching Losses (mJ) 0.8 10 TJ = 1 5 0 °C TJ = 1 2 5 °C TJ = 2 5 °C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 F o rw a rd V o lta g e D ro p - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 1000 CPV362M4K 100 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 80 I F = 8.0A I IR R M - (A ) t rr - (n s ) IF = 16A 60 I F = 16A 10 I F = 8.0 A 40 I F = 4.0A I F = 4.0A 20 0 100 d i f /d t - (A /µ s) 1 100 1000 1000 d i f /d t - (A /µ s ) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C d i(re c )M /d t - (A /µ s) Q R R - (n C ) 400 300 I F = 16A 200 I F = 8.0A I F = 4.0A 1000 I F = 8.0 A I F = 16A 100 IF = 4.0A 0 100 d i f /d t - (A /µ s ) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt 100 100 1000 d i f /d t - (A /µ s ) Fig. 17 - Typical di(rec)M/dt vs. dif/dt CPV362M4K 90% V ge Same type device as D .U.T. +V ge V ce 430µF 80% of Vce D .U .T. Ic 90% Ic 10% V ce Ic 5% Ic td (off) tf E off = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1+5µ S V ce icIcdtdt Vce t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O LT A G E D .U .T . 10% + V g trr Q rr = Ic trr id Ic dtdt tx ∫ +V g tx 10% V c c 10% Irr Vcc D U T V O LT A G E AND CURRENT Vce V pk Irr Vcc 10% Ic Ipk 90% Ic Ic D IO D E R E C O V E R Y W AVEFORMS tr td(on) 5% V c e t1 ∫ t2 c e ieIc dt dt E on = VVce t1 t2 E rec = D IO D E R E V E R S E RECOVERY ENERG Y t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr ∫ t4 VVd d idIc dt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr CPV362M4K V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O LT A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* R L= 480V 4 X IC @25°C 0 - 480V 50V 600 0µ F 100 V Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit CPV362M4K Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (Figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Case Outline — IMS-2 3.91 (.154) 2X 62.43 (2.458) 7.87 (.310) 53.85 (2.120) 5.46 (.215) 21.97 (.865) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0.38 (.015) N O TE S : 1. Tolerance unless otherw is e s pecified ± 0.254 (.010). 2. C ontrolling D im ension: Inch. 3. D im ens ions are s how n in M illim eter (Inches). 4. Term inal num bers are show n for referenc e only. 3.94 (.155) 1.27 (.050) 4.06 ± 0.51 (.160 ± .020) 5.08 (.200) 6X 1.27 (.050) 13X 2.54 (.100) 6X 3.05 ± 0.38 (.120 ± .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240) IMS-2 Package Outline (13 Pins) D im ens ions in M illim eters and (Inc hes ) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 2/98