IRF CPV362M4K

PD-5.045B
CPV362M4K
PRELIMINARY
Short Circuit Rated UltraFast IGBT
IGBT SIP MODULE
Features
1
• Short Circuit Rated UltraFast: Optimized for high
operating frequencies >5.0 kHz , and Short Circuit
Rated to 10µs @ 125°C, VGE = 15V
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
TM
• HEXFRED soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
3
D1
Q1
9
D3
Q3
4
6
D2
Q2
12
D5
Q5
15
10
D4
Q4
7
18
16
D6
Q6
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive
4.3 ARMS per phase (1.27 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
tsc
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw
Max.
Units
600
5.7
3.0
11
11
3.4
11
10
± 20
2500
23
9.1
-40 to +150
V
A
µs
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55 - 0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.1
20 (0.7)
5.5
9.0
–––
–––
Units
°C/W
g (oz)
2/24/98
CPV362M4K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 600 –––
∆V(BR)CES/∆TJ Temp. Coeff. of Breakdown Voltage
––– 0.49
VCE(on)
Collector-to-Emitter Saturation Voltage
––– 1.70
––– 1.98
––– 1.65
VGE(th)
Gate Threshold Voltage
3.0 –––
∆VGE(th)/∆TJ Temp. Coeff. of Threshold Voltage
––– -13
gfe
Forward Transconductance „
2.0 3.0
ICES
Zero Gate Voltage Collector Current
––– –––
––– –––
Diode Forward Voltage Drop
––– 1.4
V FM
––– 1.3
IGES
Gate-to-Emitter Leakage Current
––– –––
V(BR)CES
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
1.93
IC = 3.0A
VGE = 15V
–––
V
IC = 5.7A
See Fig. 2, 5
–––
IC = 3.0A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 12A
250
µA VGE = 0V, VCE = 600V
1700
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8A
See Fig. 13
1.6
IC = 8A, TJ = 150°C
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
10
Typ.
38
5.2
18
23
54
125
120
0.14
0.07
0.21
–––
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
t rr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
25
51
308
166
0.33
450
61
14
37
55
3.5
4.5
65
124
240
210
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Max. Units
Conditions
57
IC = 3.0A
8
nC
VCC = 400V
27
See Fig. 8
–––
TJ = 25°C
–––
ns
IC = 3.0A, VCC = 480V
188
VGE = 15V, RG = 51Ω
180
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ
See Fig. 9, 10, 18
0.26
–––
µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 51Ω, VCPK < 500V
–––
TJ = 150°C,
See Fig. 10, 11, 18
–––
ns
IC =3.0A, VCC = 480V
–––
VGE = 15V, RG = 51Ω
–––
Energy losses include "tail" and
–––
mJ
diode reverse recovery.
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8A
5.0
A
TJ = 25°C See Fig.
8.0
TJ = 125°C
15
VR = 200V
138
nC
TJ = 25°C See Fig.
360
TJ = 125°C
16
di/dt=200A/µs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
CPV362M4K
7.0
2.05
T c = 9 0°C
T j = 1 25 °C
P ow er F ac tor = 0 .8
M od ulatio n D ep th = 1 .15
V c c = 50 % of R ated V oltag e
1.76
5.0
1.46
4.0
1.17
3.0
0.88
2.0
0.59
1.0
0.29
0.00
100
0.0
0.1
1
Total Output Power (kW)
LOAD CURRENT (A)
6.0
10
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
V GE = 15V
20µs PULSE WIDTH
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
10
TJ = 150 o C
TJ = 25 o C
V CC = 50V
5µs PULSE WIDTH
1
5
10
15
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
20
CPV362M4K
2.5
VGE = 1 5V
VCE , Collector-to-Emitter Voltage(V)
M a xim um D C C o lle ctor C u rre n t (A )
6
4
2
A
0
25
50
75
100
125
IC =
6A
IC =
3A
2.0
IC = 1.5 A
1.5
1.0
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C)
TC , C a s e T e m p e ra tu re (°C )
Fig. 4 - Maximum Collector Current vs.
Case Temperature
VGE = 15V
80 us PULSE WIDTH
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T h e rm a l R e sp o n s e (Z thJC )
10
D = 0 .5 0
0 .20
1
0 .10
0 .0 5
0 .0 2
0 .0 1
PD M
0.1
t
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
t
N o te s :
1 . D u ty fac tor D = t
0.01
0.000 01
1
1
/t
2
2
2 . P e a k T J = P D M x Z th J C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R e c ta n g u lar P u ls e D u ra tio n (s e c )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
10
CPV362M4K
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
600
Cies
400
200
Coes
16
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
VCC = 400V
I C = 3A
12
8
4
Cres
0
0
1
10
0
100
1
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.8 I C = 6.0A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
1.0
0.6
0.4
0.2
0.0
10
20
30
40
RG
RG,, Gate
Gate Resistance
Resistance ( (Ohm)
Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
20
30
40
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
10
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
50
Ω
51
RG = 10Ω
51Ohm
VGE = 15V
VCC = 480V
IC =
6A
IC =
3A
IC = 1.5 A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature °( C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
CPV362M4K
100
= 51Ohm
Ω
= 150 ° C
= 480V
= 15V
I C , C o lle cto r-to -E m itte r C u rre n t (A )
RG
TJ
VCC
VGE
0.6
0.4
0.2
V G E = 20 V
T J = 12 5 °C
10
S A FE O PE R A TIN G A R E A
1
A
0.1
0.0
1
2
3
4
5
6
1
7
10
100
VC E , C o lle cto r-to -E m itte r V o lta g e (V )
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
In sta n ta n e o u s F o rw a rd C u rre n t - I F (A )
Total Switching Losses (mJ)
0.8
10
TJ = 1 5 0 °C
TJ = 1 2 5 °C
TJ = 2 5 °C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
F o rw a rd V o lta g e D ro p - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
CPV362M4K
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
80
I F = 8.0A
I IR R M - (A )
t rr - (n s )
IF = 16A
60
I F = 16A
10
I F = 8.0 A
40
I F = 4.0A
I F = 4.0A
20
0
100
d i f /d t - (A /µ s)
1
100
1000
1000
d i f /d t - (A /µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
500
10000
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
d i(re c )M /d t - (A /µ s)
Q R R - (n C )
400
300
I F = 16A
200
I F = 8.0A
I F = 4.0A
1000
I F = 8.0 A
I F = 16A
100
IF = 4.0A
0
100
d i f /d t - (A /µ s )
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
1000
d i f /d t - (A /µ s )
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
CPV362M4K
90% V ge
Same type
device as
D .U.T.
+V ge
V ce
430µF
80%
of Vce
D .U .T.
Ic
90% Ic
10% V ce
Ic
5% Ic
td (off)
tf
E off =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1+5µ S
V ce icIcdtdt
Vce
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O LT A G E D .U .T .
10% + V g
trr
Q rr =
Ic
trr
id
Ic dtdt
tx
∫
+V g
tx
10% V c c
10% Irr
Vcc
D U T V O LT A G E
AND CURRENT
Vce
V pk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
D IO D E R E C O V E R Y
W AVEFORMS
tr
td(on)
5% V c e
t1
∫
t2
c e ieIc
dt dt
E on = VVce
t1
t2
E rec =
D IO D E R E V E R S E
RECOVERY ENERG Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
VVd
d idIc
dt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
CPV362M4K
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
R L=
480V
4 X IC @25°C
0 - 480V
50V
600 0µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
CPV362M4K
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (Figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — IMS-2
3.91 (.154)
2X
62.43 (2.458)
7.87 (.310)
53.85 (2.120)
5.46 (.215)
21.97 (.865)
1
2
3 4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
0.38 (.015)
N O TE S :
1. Tolerance unless otherw is e
s pecified ± 0.254 (.010).
2. C ontrolling D im ension: Inch.
3. D im ens ions are s how n in
M illim eter (Inches).
4. Term inal num bers are show n
for referenc e only.
3.94 (.155)
1.27 (.050)
4.06 ± 0.51
(.160 ± .020)
5.08 (.200)
6X
1.27 (.050)
13X
2.54 (.100)
6X
3.05 ± 0.38
(.120 ± .015)
0.76 (.030)
13X
0.51 (.020)
6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im ens ions in M illim eters and (Inc hes )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
2/98