PD - 91685 IRG4PSH71U UltraFast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C • UltraFast switching speed optimized for operating frequencies 8 to 40kHz in hard switching, 200kHz in resonant mode soft switching • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency (minimum switching and conduction losses) than prior generations • Industry-benchmark Super-247 package with higher power handling capability compared to same footprint TO-247 • Creepage distance increased to 5.35mm VCES = 1200V VCE(on) typ. = 2.50V G @VGE = 15V, IC = 50A E n-channel Benefits • Generation 4 IGBT's offer highest efficiencies available • Maximum power density, twice the power handling of the TO-247, less space than TO-264 • IGBTs optimized for specific application conditions • Cost and space saving in designs that require multiple, paralleled IGBTs SUPER - 247 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current c d Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy g Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Max. Units 1200 99 50 200 200 ±20 150 350 140 -55 to +150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case- IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Min. Typ. Max. Units ––– ––– ––– 20 (2.0) ––– ––– 0.24 ––– 0.36 ––– 38 °C/W 6 (0.21) ––– N (kgf) g (oz.) 1 5/24/04 IRG4PSH71U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions e Collector-to-Emitter Breakdown Voltage V(BR)CES 1200 — — V VGE = 0V, IC = 250µA V(BR)ECS Emitter-to-Collector Breakdown Voltage 19 — — V VGE = 0V, IC = 1.0A ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA IC = 70A VGE = 15V — 2.52 2.70 V IC = 140A VCE(on) See Fig.2, 5 Collector-to-Emitter Saturation Voltage — 3.17 — IC = 70A, TJ = 150°C — 2.68 — VCE = VGE, IC = 250µA VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.2 — mV/°C VCE = VGE, IC = 1.0mA 48 72 — S VCE = 100V, IC = 70A gfe Forward Transconductance ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 10V — — 2.0 VGE = 0V, VCE = 1200V, TJ = 150°C — — 5000 IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V f Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units — — — — — — — — — — — — — — — — — — — 370 560 61 24 120 50 51 — 70 — 280 390 170 260 4.77 — 9.54 — 14.3 15.8 49 — 70 — 390 — 360 — 25 — 13 — 7280 — 290 — 50 — Conditions IC = 70A See Fig.8 nC VCC = 400V VGE = 15V IC = 70A, VCC = 960V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 mJ ns TJ = 150°C, See Fig. 9, 10, 11, 14 IC = 70A, VCC = 960V VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ nH Measured 5mm from package VGE = 0V See Fig.7 pF VCC = 30V, f = 1.0MHz Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximumjunction temperature. 2 www.irf.com IRG4PSH71U 60 Triangular wave: For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 58W 50 Clamp voltage: 80% of rated Load Current ( A ) 40 30 Square wave: 20 60% of rated voltage 10 Ideal diodes 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 1000.0 IC, Collector-to-Emitter Current (A) IC , Collector-to Emitter Current (A) 1000 100.0 100 T J = 150°C 10 T J = 25°C 1 VGE= 15V < 60µs PULSE WIDTH 1 2 3 4 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10.0 T J = 25°C 1.0 VCC = 50V < 60µs PULSE WIDTH 0.1 0.1 0 T J = 150°C 5 4 6 8 10 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PSH71U 4.0 100 VCE , Collector-to Emitter Voltage (V) Maximum DC Collector Current (A) V GE = 15V 80 60 40 20 VGE = 15V 380µs PULSE WIDTH IC = 140A 3.5 3.0 IC = 70A 2.5 IC = 35A 2.0 0 25 50 75 100 125 -60 -40 -20 150 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 τJ 0.001 0.0001 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ri (°C/W) τi (sec) 0.253 0.009159 0.1057 0.038041 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PSH71U VGE = 0V, f = 1 MHZ C ies = C ge + C gc , C ce C res = C gc C, Capacitance (pF) 12000 20 C oes = C ce + Cgc 10000 Cies 8000 6000 Coes 4000 Cres 2000 0 16 12 8 4 0 1 10 100 1000 0 VCE, Collector-to-Emitter Voltage (V) 100 200 300 400 QG, Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 1000 25 VCC = 960V R G = 5.0Ω VGE = 15V T J = 25°C I C = 70A 20 Total Switching Losses (mJ) Switching Losses (mJ) VCC = 400V IC = 70A SHORTED VGE, Gate-to-Emitter Voltage (V) 14000 15 VGE = 15V VCC = 960V 100 I C = 140A I C = 70A I C = 35A 10 1 10 0 10 20 30 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PSH71U 70 1000 RG = 5.0Ω Total Switching Losses (mJ) IC, Collector-to-Emitter Current (A) TJ = 150°C VGE = 15V 60 VCC = 960V 50 40 30 20 10 0 100 SAFE OPERATING AREA 10 1 20 40 60 80 100 120 IC, Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 VGE = 20V TJ = 125° 140 1 10 100 1000 10000 VCE, Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4PSH71U L D.U.T. VC * 50V RL = 0 - 960V 1000V c 960V 4 X IC@25°C 480µF 960V d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 960V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% IC 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4PSH71U Super-247™ (TO-274AA) Package Outline 0.13 [.005] 16.10 [.632] 15.10 [.595] 2X R 3.00 [.118] 2.00 [.079] 5.50 [.216] 4.50 [.178] A 0.25 [.010] B A 13.90 [.547] 13.30 [.524] 2.15 [.084] 1.45 [.058] 1.30 [.051] 0.70 [.028] 16.10 [.633] 15.50 [.611] 4 20.80 [.818] 19.80 [.780] 4 C 1 2 3 B 14.80 [.582] 13.80 [.544] 5.45 [.215] 2X Ø 1.60 [.063] MAX. 4.25 [.167] 3.85 [.152] 3X 1.60 [.062] 1.45 [.058] 0.25 [.010] B A 3X 1.30 [.051] 1.10 [.044] E 2.35 [.092] 1.65 [.065] S ECT ION E-E NOT ES : 1. DIMENS IONING AND TOLERANCING PER AS ME Y14.5M-1994. 2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ] 3. CONTROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS TO JEDEC OUTLINE T O-274AA E LEAD AS S IGNMENT S MOS FET 1 - GATE 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GATE 2 - COLLECTOR 3 - EMIT TER 4 - COLLECTOR Super-247™ (TO-274AA)Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPS37N50A A8B9 0020 ASSEMBLY LOT CODE TOP DATE CODE (YYWW) YY = YEAR WW = WEEK Super TO-247™ package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/04 8 www.irf.com