IRF IRG4PSH71U

PD - 91685
IRG4PSH71U
UltraFast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• UltraFast switching speed optimized for operating
frequencies 8 to 40kHz in hard switching, 200kHz
in resonant mode soft switching
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency
(minimum switching and conduction losses) than
prior generations
• Industry-benchmark Super-247 package with
higher power handling capability compared to
same footprint TO-247
• Creepage distance increased to 5.35mm
VCES = 1200V
VCE(on) typ. = 2.50V
G
@VGE = 15V, IC = 50A
E
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiencies
available
• Maximum power density, twice the power
handling of the TO-247, less space than TO-264
• IGBTs optimized for specific application conditions
• Cost and space saving in designs that require
multiple, paralleled IGBTs
SUPER - 247
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
c
d
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
g
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
Max.
Units
1200
99
50
200
200
±20
150
350
140
-55 to +150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case- IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Min.
Typ.
Max.
Units
–––
–––
–––
20 (2.0)
–––
–––
0.24
–––
0.36
–––
38
°C/W
6 (0.21)
–––
N (kgf)
g (oz.)
1
5/24/04
IRG4PSH71U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
e
Collector-to-Emitter Breakdown Voltage
V(BR)CES
1200 —
—
V VGE = 0V, IC = 250µA
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
19
—
—
V VGE = 0V, IC = 1.0A
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
— 0.78 — V/°C VGE = 0V, IC = 1mA
IC = 70A
VGE = 15V
— 2.52 2.70
V
IC = 140A
VCE(on)
See Fig.2, 5
Collector-to-Emitter Saturation Voltage
— 3.17 —
IC = 70A, TJ = 150°C
— 2.68 —
VCE = VGE, IC = 250µA
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
-9.2
— mV/°C VCE = VGE, IC = 1.0mA
48
72
—
S VCE = 100V, IC = 70A
gfe
Forward Transconductance
ICES
Zero Gate Voltage Collector Current
—
—
500 µA VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 10V
—
—
2.0
VGE = 0V, VCE = 1200V, TJ = 150°C
—
— 5000
IGES
Gate-to-Emitter Leakage Current
—
— ±100 nA VGE = ±20V
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
370 560
61
24
120
50
51
—
70
—
280 390
170 260
4.77 —
9.54 —
14.3 15.8
49
—
70
—
390
—
360
—
25
—
13
—
7280 —
290
—
50
—
Conditions
IC = 70A
See Fig.8
nC VCC = 400V
VGE = 15V
IC = 70A, VCC = 960V
ns VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
See Fig. 9, 10, 11, 14
mJ
ns
TJ = 150°C, See Fig. 9, 10, 11, 14
IC = 70A, VCC = 960V
VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
mJ
nH Measured 5mm from package
VGE = 0V
See Fig.7
pF VCC = 30V,
f = 1.0MHz
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
… Repetitive rating; pulse width limited by maximumjunction temperature.
2
www.irf.com
IRG4PSH71U
60
Triangular wave:
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 58W
50
Clamp voltage:
80% of rated
Load Current ( A )
40
30
Square wave:
20
60% of rated
voltage
10
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000.0
IC, Collector-to-Emitter Current (A)
IC , Collector-to Emitter Current (A)
1000
100.0
100
T J = 150°C
10
T J = 25°C
1
VGE= 15V
< 60µs PULSE WIDTH
1
2
3
4
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10.0
T J = 25°C
1.0
VCC = 50V
< 60µs PULSE WIDTH
0.1
0.1
0
T J = 150°C
5
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PSH71U
4.0
100
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current (A)
V GE = 15V
80
60
40
20
VGE = 15V
380µs PULSE WIDTH
IC = 140A
3.5
3.0
IC = 70A
2.5
IC = 35A
2.0
0
25
50
75
100
125
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
τJ
0.001
0.0001
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τC
τ
τ2
Ri (°C/W) τi (sec)
0.253
0.009159
0.1057
0.038041
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PSH71U
VGE = 0V,
f = 1 MHZ
C ies = C ge + C gc , C ce
C res = C gc
C, Capacitance (pF)
12000
20
C oes = C ce + Cgc
10000
Cies
8000
6000
Coes
4000
Cres
2000
0
16
12
8
4
0
1
10
100
1000
0
VCE, Collector-to-Emitter Voltage (V)
100
200
300
400
QG, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1000
25
VCC = 960V
R G = 5.0Ω
VGE = 15V
T J = 25°C
I C = 70A
20
Total Switching Losses (mJ)
Switching Losses (mJ)
VCC = 400V
IC = 70A
SHORTED
VGE, Gate-to-Emitter Voltage (V)
14000
15
VGE = 15V
VCC = 960V
100
I C = 140A
I C = 70A
I C = 35A
10
1
10
0
10
20
30
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PSH71U
70
1000
RG = 5.0Ω
Total Switching Losses (mJ)
IC, Collector-to-Emitter Current (A)
TJ = 150°C
VGE = 15V
60
VCC = 960V
50
40
30
20
10
0
100
SAFE OPERATING AREA
10
1
20
40
60
80
100
120
IC, Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGE = 20V
TJ = 125°
140
1
10
100
1000
10000
VCE, Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4PSH71U
L
D.U.T.
VC *
50V
RL =
0 - 960V
1000V
c
960V
4 X IC@25°C
480µF
960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 960V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
IC 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4PSH71U
Super-247™ (TO-274AA) Package Outline
0.13 [.005]
16.10 [.632]
15.10 [.595]
2X R 3.00 [.118]
2.00 [.079]
5.50 [.216]
4.50 [.178]
A
0.25 [.010]
B A
13.90 [.547]
13.30 [.524]
2.15 [.084]
1.45 [.058]
1.30 [.051]
0.70 [.028]
16.10 [.633]
15.50 [.611]
4
20.80 [.818]
19.80 [.780]
4
C
1
2
3
B
14.80 [.582]
13.80 [.544]
5.45 [.215]
2X
Ø 1.60 [.063]
MAX.
4.25 [.167]
3.85 [.152]
3X
1.60 [.062]
1.45 [.058]
0.25 [.010]
B A
3X
1.30 [.051]
1.10 [.044]
E
2.35 [.092]
1.65 [.065]
S ECT ION E-E
NOT ES :
1. DIMENS IONING AND TOLERANCING PER AS ME Y14.5M-1994.
2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ]
3. CONTROLLING DIMENS ION: MILLIMET ER
4. OUT LINE CONFORMS TO JEDEC OUTLINE T O-274AA
E
LEAD AS S IGNMENT S
MOS FET
1 - GATE
2 - DRAIN
3 - S OURCE
4 - DRAIN
IGBT
1 - GATE
2 - COLLECTOR
3 - EMIT TER
4 - COLLECTOR
Super-247™ (TO-274AA)Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE A8B9
INTERNATIONAL RECTIFIER
LOGO
PART NUMBER
IRFPS37N50A
A8B9
0020
ASSEMBLY LOT CODE
TOP
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
Super TO-247™ package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.5/04
8
www.irf.com