PD - 97396 IRGI4056DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses 5 µS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free package C VCES = 600V IC = 9.0A, TC = 100°C tSC ≥ 5µs, TJ(max) = 150°C G VCE(on) typ. = 1.44V E n-channel Benefits C • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation • Low EMI E C G TO-220 Full-Pak G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 18 IC @ TC = 100°C ICM Continuous Collector Current Pulse Collector Current, VGE = 15V 9.0 ILM Clamped Inductive Load Current, VGE = 20V IF @ TC = 25°C Diode Continous Forward Current 18 IF @ TC = 100°C 9.0 IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 34 PD @ TC = 100°C Maximum Power Dissipation 14 TJ Operating Junction and TSTG Storage Temperature Range 27 c 36 d A 36 V W -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 3.7 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 6.6 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 65 1 www.irf.com 05/22/09 IRGI4056DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.66 — — 1.44 1.65 — 1.69 — — 1.72 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units VGE(th) Gate Threshold Voltage 4.0 — 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -13 — gfe ICES Forward Transconductance — 7.1 — Collector-to-Emitter Leakage Current — — 20 — 60 — — 2.3 3.0 — 1.7 — — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100µA Ref.Fig e CT6 V/°C VGE = 0V, IC = 1.0mA (-55°C-150°C) IC = 9.0A, VGE = 15V, TJ = 25°C V CT6 5,6,7 IC = 9.0A, VGE = 15V, TJ = 125°C 9,10,11 IC = 9..0A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 350µA 9, 10, mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C) S VCE = 50V, IC = 9.0A µA 11, 12 VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C V IF = 9.0A 8 IF = 9.0A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 25 Max. Units 38 Qge Gate-to-Emitter Charge (turn-on) — 6.6 9.9 Qgc Gate-to-Collector Charge (turn-on) — 9.5 14 Eon Turn-On Switching Loss — 59 143 Eoff Turn-Off Switching Loss — 177 264 Etotal Total Switching Loss — 236 407 td(on) Turn-On delay time — 34 52 tr Rise time — 12 29 td(off) Turn-Off delay time — 84 103 tf Fall time — 24 42 Eon Turn-On Switching Loss — 131 — Eoff Turn-Off Switching Loss — 276 — Etotal Total Switching Loss — 407 — td(on) Turn-On delay time — 31 — tr Rise time — 15 — td(off) Turn-Off delay time — 104 — tf Fall time — 86 — Cies Input Capacitance — 769 — Conditions Ref.Fig IC = 9.0A nC 24 VGE = 15V CT1 VCC = 400V IC = 9.0A, VCC = 400V, VGE = 15V µJ CT4 RG = 22Ω, L = 1.0mH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 9.0A, VCC = 400V, VGE = 15V ns IC = 9.0A, VCC = 400V, VGE=15V µJ CT4 RG = 22Ω, L = 1.0mH, TJ = 25°C RG=22Ω, L=1.0mH, TJ = 150°C 13, 15 e CT4 Energy losses include tail & diode reverse recovery IC = 9.0A, VCC = 400V, VGE = 15V ns WF1, WF2 14, 16 RG = 22Ω, L = 1.0mH CT4 TJ = 150°C WF1 WF2 pF VGE = 0V Coes Output Capacitance — 59 — VCC = 30V Cres Reverse Transfer Capacitance — 21 — f = 1.0Mhz TJ = 150°C, IC = 36A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 VCC = 480V, Vp =600V 23 4 CT2 Rg = 22Ω, VGE = +20V to 0V — — µs VCC = 400V, Vp =600V Rg = 75Ω, VGE = +15V to 0V Erec trr Reverse Recovery Energy of the Diode — Diode Reverse Recovery Time — Irr Peak Reverse Recovery Current — — µJ TJ = 150°C 72 — ns VCC = 400V, IF = 9.0A 19 — A VGE = 15V, Rg = 22Ω, L = 1.0mH 176 22, CT3 WF4 17, 18, 19 20, 21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 80µH, RG = 22Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGI4056DPbF 40 20 35 30 15 Ptot (W) IC (A) 25 10 20 15 10 5 5 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10µsec IC (A) IC (A) 100µsec 10 1msec 10 DC 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 1 10 100 1000 10 100 VCE (V) 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V 60 60 Top 50 50 Top V = 18V GE VGE = 15V V = 12V GE VGE = 10V 30 Bottom VGE = 8.0V V = 8.0V GE 30 20 20 10 10 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com Bottom 40 ICE (A) ICE (A) 40 VGE = 18V V = 15V GE V = 12V GE VGE = 10V 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGI4056DPbF 60 60 Top VGE = 18V V = 15V GE V = 12V GE VGE = 10V 50 Bottom V = 8.0V GE 40 IF (A) ICE (A) 40 -40°C 25°C 125°C 50 30 30 20 20 10 10 0 0 0 2 4 6 8 10 0.0 1.0 2.0 VCE (V) 5.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 14 14 12 12 10 10 ICE = 4.5A 8 VCE (V) VCE (V) 4.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs ICE = 9.0A ICE = 18A 6 8 ICE = 4.5A 6 ICE = 18A ICE = 9.0A 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 50 14 12 T J = -40°C 40 T J = 25°C T J = 150°C 10 ICE = 4.5A ICE = 9.0A ICE = 18A 8 6 ICE (A) VCE (V) 3.0 30 20 4 10 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 20 2 4 6 8 10 12 14 16 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGI4056DPbF 600 1000 500 EOFF Swiching Time (ns) td OFF Energy (µJ) 400 300 EON 200 100 tF tdON 10 tR 100 0 1 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V 400 1000 350 Swiching Time (ns) Energy (µJ) 300 EOFF 250 200 150 EON 100 tdOFF tdON 50 tR 0 10 0 20 40 60 80 100 0 20 40 60 80 100 RG (Ω) Rg (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 9.0A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 9.0A; VGE = 15V 25 30 RG = 10Ω 25 20 20 RG = 22Ω 15 RG = 47Ω IRR (A) IRR (A) tF 100 15 10 10 RG = 100Ω 5 5 4 6 8 10 12 14 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C www.irf.com 16 18 0 25 50 75 100 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C 5 IRGI4056DPbF 1000 25 18A 800 20 10Ω QRR (µC) IRR (A) 22Ω 15 600 47Ω 100Ω 10 400 5 200 9.0A 4.5A 200 400 600 800 1000 0 1200 200 400 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 150°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 9.0A; TJ = 150°C RG = 10Ω 250 16 Tsc 80 Time (µs) 100 12 60 10 8 RG = 100Ω 50 Current (A) RG = 47Ω 150 Isc 14 RG = 22Ω 200 Energy (µJ) 100 18 300 40 6 20 4 0 4 6 8 10 12 14 16 18 8 20 10 IF (A) 12 14 16 VGE (V) Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 1000 16 VGE, Gate-to-Emitter Voltage (V) Cies Capacitance (pF) 800 1000 1200 1400 diF /dt (A/µs) diF /dt (A/µs) 100 Coes 10 Cres 1 V CES = 300V 14 V CES = 400V 12 V CES = 480V 10 8 6 4 2 0 0 50 100 150 200 250 300 350 400 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 600 0 5 10 15 20 25 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 9.0A; L = 1.0mH www.irf.com IRGI4056DPbF 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.02 0.01 τJ 1E-005 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R1 R1 0.3059 0.000083 0.5418 0.000691 1.1856 0.042206 1.6167 1.026 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 τJ 0.02 0.1 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 1E-005 0.0001 τi (sec) 0.3687 0.000037 2.0080 0.000830 2.0586 0.011241 2.1647 0.765350 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 Ri (°C/W) 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGI4056DPbF L L DUT 0 VCC 1K 80 V + - DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT VC C 22K C sense G force DUT 0.0075µF Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGI4056DPbF 800 700 tf 600 90% ICE 500 40 800 35 700 30 600 25 500 40 35 TEST CURRENT tr 30 25 300 15 5% V CE 5% ICE 100 0 Eoff Loss -100 7.4 7.9 20 300 10 200 5 100 0 0 10 0 Eon Loss -100 4.95 5.05 5.15 5.25 5.35 5.45 -5 8.4 200 10 -300 0 -400 -5 Peak IRR -10 10% Peak IRR -700 -800 1.00 1.10 1.20 -15 150 ICE 200 100 100 50 0 0 -20 -25 1.30 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 200 300 Vce (V) 5 VCE 400 15 t RR -600 250 20 QRR -200 -500 500 IF (A) V F (V) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 25 -100 -5 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 0 5 5% V CE time(µs) 100 15 10% test current Ice (A) 200 400 ICE (A) 20 V CE (V) 400 ICE (A) V CE (V) 90% test current -100 -50 -5 0 5 10 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 9 IRGI4056DPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5),* . '$7(&2'( <($5 :((. /,1(. TO-220 Full-Pak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/09 10 www.irf.com