Datasheet

PD - 97396
IRGI4056DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
•
Low VCE (ON) trench IGBT technology
Low switching losses
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) temperature co-efficient
Ultra fast soft recovery co-pak diode
Tight parameter distribution
Lead-Free package
C
VCES = 600V
IC = 9.0A, TC = 100°C
tSC ≥ 5µs, TJ(max) = 150°C
G
VCE(on) typ. = 1.44V
E
n-channel
Benefits
C
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
• Low EMI
E
C
G
TO-220
Full-Pak
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
18
IC @ TC = 100°C
ICM
Continuous Collector Current
Pulse Collector Current, VGE = 15V
9.0
ILM
Clamped Inductive Load Current, VGE = 20V
IF @ TC = 25°C
Diode Continous Forward Current
18
IF @ TC = 100°C
9.0
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
34
PD @ TC = 100°C
Maximum Power Dissipation
14
TJ
Operating Junction and
TSTG
Storage Temperature Range
27
c
36
d
A
36
V
W
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
3.7
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
6.6
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
65
1
www.irf.com
05/22/09
IRGI4056DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.66
—
—
1.44
1.65
—
1.69
—
—
1.72
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-13
—
gfe
ICES
Forward Transconductance
—
7.1
—
Collector-to-Emitter Leakage Current
—
—
20
—
60
—
—
2.3
3.0
—
1.7
—
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100µA
Ref.Fig
e
CT6
V/°C VGE = 0V, IC = 1.0mA (-55°C-150°C)
IC = 9.0A, VGE = 15V, TJ = 25°C
V
CT6
5,6,7
IC = 9.0A, VGE = 15V, TJ = 125°C
9,10,11
IC = 9..0A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 350µA
9, 10,
mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C)
S VCE = 50V, IC = 9.0A
µA
11, 12
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
V
IF = 9.0A
8
IF = 9.0A, TJ = 150°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
25
Max. Units
38
Qge
Gate-to-Emitter Charge (turn-on)
—
6.6
9.9
Qgc
Gate-to-Collector Charge (turn-on)
—
9.5
14
Eon
Turn-On Switching Loss
—
59
143
Eoff
Turn-Off Switching Loss
—
177
264
Etotal
Total Switching Loss
—
236
407
td(on)
Turn-On delay time
—
34
52
tr
Rise time
—
12
29
td(off)
Turn-Off delay time
—
84
103
tf
Fall time
—
24
42
Eon
Turn-On Switching Loss
—
131
—
Eoff
Turn-Off Switching Loss
—
276
—
Etotal
Total Switching Loss
—
407
—
td(on)
Turn-On delay time
—
31
—
tr
Rise time
—
15
—
td(off)
Turn-Off delay time
—
104
—
tf
Fall time
—
86
—
Cies
Input Capacitance
—
769
—
Conditions
Ref.Fig
IC = 9.0A
nC
24
VGE = 15V
CT1
VCC = 400V
IC = 9.0A, VCC = 400V, VGE = 15V
µJ
CT4
RG = 22Ω, L = 1.0mH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 9.0A, VCC = 400V, VGE = 15V
ns
IC = 9.0A, VCC = 400V, VGE=15V
µJ
CT4
RG = 22Ω, L = 1.0mH, TJ = 25°C
RG=22Ω, L=1.0mH, TJ = 150°C
13, 15
e
CT4
Energy losses include tail & diode reverse recovery
IC = 9.0A, VCC = 400V, VGE = 15V
ns
WF1, WF2
14, 16
RG = 22Ω, L = 1.0mH
CT4
TJ = 150°C
WF1
WF2
pF
VGE = 0V
Coes
Output Capacitance
—
59
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
21
—
f = 1.0Mhz
TJ = 150°C, IC = 36A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
VCC = 480V, Vp =600V
23
4
CT2
Rg = 22Ω, VGE = +20V to 0V
—
—
µs
VCC = 400V, Vp =600V
Rg = 75Ω, VGE = +15V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
—
Diode Reverse Recovery Time
—
Irr
Peak Reverse Recovery Current
—
—
µJ
TJ = 150°C
72
—
ns
VCC = 400V, IF = 9.0A
19
—
A
VGE = 15V, Rg = 22Ω, L = 1.0mH
176
22, CT3
WF4
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 80µH, RG = 22Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGI4056DPbF
40
20
35
30
15
Ptot (W)
IC (A)
25
10
20
15
10
5
5
0
0
0
25
50
75
100
125
150
0
25
50
75
100
125
150
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10µsec
IC (A)
IC (A)
100µsec
10
1msec
10
DC
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1
1
10
100
1000
10
100
VCE (V)
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
60
60
Top
50
50
Top
V
= 18V
GE
VGE = 15V
V
= 12V
GE
VGE = 10V
30
Bottom
VGE = 8.0V
V
= 8.0V
GE
30
20
20
10
10
0
0
0
2
4
6
8
10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
Bottom
40
ICE (A)
ICE (A)
40
VGE = 18V
V
= 15V
GE
V
= 12V
GE
VGE = 10V
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGI4056DPbF
60
60
Top
VGE = 18V
V
= 15V
GE
V
= 12V
GE
VGE = 10V
50
Bottom
V
= 8.0V
GE
40
IF (A)
ICE (A)
40
-40°C
25°C
125°C
50
30
30
20
20
10
10
0
0
0
2
4
6
8
10
0.0
1.0
2.0
VCE (V)
5.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
14
14
12
12
10
10
ICE = 4.5A
8
VCE (V)
VCE (V)
4.0
VF (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
ICE = 9.0A
ICE = 18A
6
8
ICE = 4.5A
6
ICE = 18A
ICE = 9.0A
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
50
14
12
T J = -40°C
40
T J = 25°C
T J = 150°C
10
ICE = 4.5A
ICE = 9.0A
ICE = 18A
8
6
ICE (A)
VCE (V)
3.0
30
20
4
10
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
4
20
2
4
6
8
10
12
14
16
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGI4056DPbF
600
1000
500
EOFF
Swiching Time (ns)
td OFF
Energy (µJ)
400
300
EON
200
100
tF
tdON
10
tR
100
0
1
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V
400
1000
350
Swiching Time (ns)
Energy (µJ)
300
EOFF
250
200
150
EON
100
tdOFF
tdON
50
tR
0
10
0
20
40
60
80
100
0
20
40
60
80
100
RG (Ω)
Rg (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 9.0A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 9.0A; VGE = 15V
25
30
RG = 10Ω
25
20
20
RG = 22Ω
15
RG = 47Ω
IRR (A)
IRR (A)
tF
100
15
10
10
RG = 100Ω
5
5
4
6
8
10
12
14
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 150°C
www.irf.com
16
18
0
25
50
75
100
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 150°C
5
IRGI4056DPbF
1000
25
18A
800
20
10Ω
QRR (µC)
IRR (A)
22Ω
15
600
47Ω
100Ω
10
400
5
200
9.0A
4.5A
200
400
600
800
1000
0
1200
200
400
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 150°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 9.0A; TJ = 150°C
RG = 10Ω
250
16
Tsc
80
Time (µs)
100
12
60
10
8
RG = 100Ω
50
Current (A)
RG = 47Ω
150
Isc
14
RG = 22Ω
200
Energy (µJ)
100
18
300
40
6
20
4
0
4
6
8
10
12
14
16
18
8
20
10
IF (A)
12
14
16
VGE (V)
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 150°C
1000
16
VGE, Gate-to-Emitter Voltage (V)
Cies
Capacitance (pF)
800 1000 1200 1400
diF /dt (A/µs)
diF /dt (A/µs)
100
Coes
10
Cres
1
V CES = 300V
14
V CES = 400V
12
V CES = 480V
10
8
6
4
2
0
0
50
100 150 200 250 300 350 400
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
600
0
5
10
15
20
25
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 9.0A; L = 1.0mH
www.irf.com
IRGI4056DPbF
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.02
0.01
τJ
1E-005
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R1
R1
0.3059
0.000083
0.5418
0.000691
1.1856
0.042206
1.6167
1.026
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
τJ
0.02
0.1
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
0.0001
τi (sec)
0.3687
0.000037
2.0080
0.000830
2.0586
0.011241
2.1647
0.765350
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
Ri (°C/W)
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4056DPbF
L
L
DUT
0
VCC
1K
80 V
+
-
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
DUT
VC
C
22K
C sense
G force
DUT
0.0075µF
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
IRGI4056DPbF
800
700
tf
600
90% ICE
500
40
800
35
700
30
600
25
500
40
35
TEST CURRENT
tr
30
25
300
15
5% V CE
5% ICE
100
0
Eoff Loss
-100
7.4
7.9
20
300
10
200
5
100
0
0
10
0
Eon Loss
-100
4.95 5.05 5.15 5.25 5.35 5.45
-5
8.4
200
10
-300
0
-400
-5
Peak
IRR
-10
10%
Peak
IRR
-700
-800
1.00
1.10
1.20
-15
150
ICE
200
100
100
50
0
0
-20
-25
1.30
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
200
300
Vce (V)
5
VCE
400
15
t RR
-600
250
20
QRR
-200
-500
500
IF (A)
V F (V)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
25
-100
-5
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
0
5
5% V CE
time(µs)
100
15
10% test current
Ice (A)
200
400
ICE (A)
20
V CE (V)
400
ICE (A)
V CE (V)
90% test current
-100
-50
-5
0
5
10
Time (uS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
9
IRGI4056DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220 Full-Pak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 05/09
10
www.irf.com