IRF IRGP20B120UD-E

PD- 93817
IRGP20B120UD-E
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
VCES = 1200V
• UltraFast Non Punch Through (NPT)
Technology
• Low Diode VF (1.67V Typical @ 20A & 25°C)
• 10 µs Short Circuit Capability
• Square RBSOA
• UltraSoft Diode Recovery Characteristics
• Positive VCE(on) Temperature Coefficient
• Extended Lead TO-247AD Package
VCE(on) typ. = 3.05V
G
VGE = 15V, IC = 20A, 25°C
E
N-channel
Benefits
• Benchmark Efficiency Above 20KHz
• Optimized for Welding, UPS, and Induction Heating
Applications
• Rugged with UltraFast Performance
• Low EMI
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation
• Longer Leads for Easier Mounting
TO-247AD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current (Fig.1)
Continuous Collector Current (Fig.1)
Pulsed Collector Current (Fig.3, Fig. CT.5)
Clamped Inductive Load Current(Fig.4, Fig. CT.2)
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation (Fig.2)
Maximum Power Dissipation (Fig.2)
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw.
Max.
Units
1200
40
20
120
120
20
120
± 20
300
120
-55 to + 150
V
A
V
W
°C
300, (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
ZθJC
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Transient Thermal Impedance Junction-to-Case
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
0.42
0.83
–––
40
–––
Units
°C/W
g (oz)
(Fig.24)
1
12/14/99
IRGP20B120UD-E
Electrical C h aracteristics @ T J = 25°C (u n less o th erw ise sp ecified )
P aram eter
V (B R )C E S
C o lle cto r-to -E m itte r B re a kd o w n V o lta g e
M in.
Typ.
M ax. Units
1200
∆V (B R )C E S / ∆Tj T e m p e ra tu re C o e ff. o f B re a kd o w n V o lta g e
V
V /°C V G E = 0 V , Ic = 1 m A ( 2 5 -1 2 5 o C )
+ 1 .2
3 .0 5
3 .4 5
IC = 2 0 A , V G E = 1 5 V
5, 6
3 .3 7
3 .8 0
IC = 2 5 A , V G E = 1 5 V
7, 9
V o lta g e
4 .2 3
4 .8 5
IC = 4 0 A , V G E = 1 5 V
10
3 .8 9
4 .5 0
I C = 2 0 A , V G E = 1 5 V , T J = 1 2 5 °C
11
4 .3 1
5 .0 6
I C = 2 5 A , V G E = 1 5 V , T J = 1 2 5 °C
5 .0
6 .0
V G E (th)
G a te T h re sh o ld V o lta g e
∆V G E (th) / ∆Tj
T e m p e ra tu re C o e ff. o f T h re sh o ld V o lta g e
g fe
F o rw a rd T ra n sco n d u cta n ce
4 .0
1 5 .7
V
o
- 1 .2
1 3 .6
V
mV/ C
1 7 .8
S
250
V FM
Z e ro G a te V o lta g e C o lle cto r C u rre n t
D io d e F o rw a rd V o lta g e D ro p
420
750
1482
2200
1 .6 7
1 .9 6
1 .7 6
2 .0 6
1 .7 3
2 .0 3
1 .8 7
IG E S
Fig.
C o lle cto r-to -E m itte r S a tu ra tio n
V C E (on)
IC E S
Conditions
V G E = 0 V ,I c = 2 5 0 µ A
9,10,11,12
o
V C E = V G E , I C = 1 m A (2 5 -1 2 5 C )
V C E = 5 0 V , IC = 2 0 A , P W = 8 0 µ s
VGE = 0 V, VCE = 1 2 0 0 V
µA
V G E = 0 V , V C E = 1 2 0 0 V , T J = 1 2 5 °C
V G E = 0 V , V C E = 1 2 0 0 V , T J = 1 5 0 °C
IC = 2 0 A
V
IC = 2 5 A
8
I C = 2 0 A , T J = 1 2 5 °C
2 .1 8
±1 0 0
G a te -to -E m itte r L e a ka g e C u rre n t
V C E = V G E , IC = 2 5 0 µ A
I C = 2 5 A , T J = 1 2 5 °C
nA
VGE = ±20V
Sw itch in g C h aracteristics @ T J = 25°C (u n less o th erw ise sp ecified )
P aram eter
M in.
Typ.
M ax. Units
169
254
24
36
Qg
T o ta l G a te ch a rg e (tu rn -o n )
Q ge
G a te - E m itte r C h a rg e (tu rn -o n )
Q gc
G a te - C o lle cto r C h a rg e (tu rn -o n )
82
126
E on
T u rn -O n S w itch in g L o ss
850
1050
E off
T u rn -O ff S w itch in g L o ss
425
650
E tot
T o ta l S w itch in g L o ss
1275
1800
E on
T u rn -o n S w itch in g L o ss
1350
1550
E off
T u rn -o ff S w itch in g L o ss
610
875
Conditions
Fig.
IC = 2 0 A
nC
23
VCC = 6 0 0 V
CT 1
VGE = 15V
µJ
IC = 2 0 A , V C C = 6 0 0 V
CT 4
V G E = 1 5 V , R g = 5 Ω, L = 200µH
WF 1
o
T J = 2 5 C , E n e rg y lo sse s in clu d e ta il
a n d d io d e re ve rse re co ve ry
Ic = 2 0 A , V C C = 6 0 0 V
µJ
WF 2
13, 15
V G E = 1 5 V , R g = 5 Ω, L = 200µH
CT 4
o
E tot
T o ta l S w itch in g L o ss
1960
2425
td (o n )
T u rn - o n d e la y tim e
50
65
tr
R ise tim e
20
30
td (o ff)
T u rn - o ff d e la y tim e
204
230
tf
F a ll tim e
24
35
C ies
In p u t C a p a cita n ce
C oes
O u tp u t C a p a cita n ce
C res
R e ve rse T ra n sfe r C a p a cita n ce
T J = 1 2 5 C , E n e rg y lo sse s in clu d e ta il
a n d d io d e re ve rse re co ve ry
Ic = 2 0 A , V C C = 6 0 0 V
ns
14, 16
V G E = 1 5 V , R g = 5 Ω, L = 200µH
CT 4
o
WF 1
TJ = 125 C
WF 2
2200
VGE = 0V
210
pF
85
VCC = 3 0 V
22
f = 1 .0 M H z
o
T J = 1 5 0 C , Ic = 1 2 0 A
R BSO A
R e ve rse b ia s sa fe o p e ra tin g a re a
WF 1 & 2
FU L L S Q U A R E
4
VCC = 1 0 0 0 V, VP = 1 2 0 0 V
CT 2
R g = 5 Ω, V G E = + 1 5 V to 0 V
o
10
TJ = 150 C
CT 3
VCC = 9 0 0 V, VP = 1 2 0 0 V
WF 4
----
----
µs
1600
2100
µJ
TJ = 125 C
ns
V C C = 6 0 0 V , Ic = 2 0 A
A
V G E = 1 5 V , R g = 5 Ω, L = 200µH
SC SO A
S h o rt C ircu it S a fe O p e ra tin g A re a
E rec
R e ve rse re co ve ry e n e rg y o f th e d io d e
trr
D io d e R e ve rse re co ve ry tim e
Irr
P e a k R e ve rse R e co ve ry C u rre n t
32
In te rn a l E m itte r In d u cta n ce
13
R g = 5 Ω, V G E = + 1 5 V to 0 V
Le
2
300
36
nH
o
17,18,19
20, 21
CT 4, WF 3
M e a su re d 5 m m fro m th e p a cka g e .
www.irf.com
IRGP20B120UD-E
F ig .2 - P o w e r D is s ip a tio n v s . C a s e
T e m p e ra tu re
Fig.1 - Maximum DC Collector
Current vs. Case Temperature
50
320
45
280
40
240
35
200
(W )
to t
25
160
P
I
C
(A)
30
20
120
15
80
10
40
5
0
0
0
40
80
120
160
0
40
T C (°C)
80
120
160
T C (°C )
F ig .4 - R e v e rs e B ia s S O A
T j = 1 5 0 °C , V G E = 1 5 V
Fig.3 - Forward SOA
T C =25°C; Tj < 150°C
1000
1000
PULSED
2µs
100
10µs
100
(A )
C
10
1ms
I
IC (A)
100µs
10
1
10ms
DC
0.1
1
1
www.irf.com
10
100
V CE (V)
1000
10000
1
10
V
100
(V )
1000
10000
CE
3
IRGP20B120UD-E
Fig.6 - Typical IGBT Output
Characteristics
Tj=25°C; tp=300µs
Fig.5 - Typical IGBT Output
Characteristics
Tj= -40°C; tp=300µs
60
60
V GE = 15V
V GE = 12V
V GE = 12V
45
V GE = 10V
45
V GE = 10V
40
V GE = 8V
40
V GE = 8V
35
(A)
35
30
C
30
25
25
I
I
V GE = 15V
50
C
(A)
50
V GE = 18V
55
V GE = 18V
55
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
V CE (V)
Fig.7 - Typical IGBT Output
Characteristics
Tj=125°C; tp=300µs
60
55
50
45
40
45
5
6
40
(A)
35
30
35
30
F
25
I
I
3
4
V CE (V)
- 40°C
25°C
125°C
50
C
(A)
55
V GE = 10V
V GE = 8V
2
Fig.8 - Typical Diode Forward
Characteristic
tp=300µs
60
V GE = 18V
V GE = 15V
V GE = 12V
1
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
V CE (V)
4
4
5
6
0
1
2
V F (V)
3
4
www.irf.com
IRGP20B120UD-E
Fig.10 - Typical V CE vs V GE
Tj= 25°C
20
20
18
18
16
16
14
14
12
12
10
V CE ( V )
V CE ( V )
Fig.9 - Typical V CE vs V GE
Tj= -40°C
I CE =10A
I CE =20A
I CE =40A
8
10
8
6
6
4
4
2
2
0
0
6
8
10
12 14
V GE (V)
16
18
20
6
10
12 14
V GE (V)
16
18
20
18
225
16
200
14
175
12
150
Tj=25°C
Tj=125°C
(A)
250
125
C
I CE =10A
I CE =20A
I CE =40A
I
V CE ( V )
20
8
8
Fig.12 - Typ. Transfer Characteristics
V CE =20V; tp=20µs
Fig.11 - Typical V CE vs V GE
Tj= 125°C
10
I CE =10A
I CE =20A
I CE =40A
100
6
75
4
50
2
25
0
0
Tj=125°C
Tj=25°C
6
www.irf.com
8
10
12 14
V GE (V)
16
18
20
0
4
8
12
V GE (V)
16
20
5
IRGP20B120UD-E
Fig.13 - Typical Energy Loss vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ; V GE =15V
Fig.14 - Typical Switching Time vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ; V GE =15V
6000
1000
Eon
5000
4000
t (nS)
Energy (µJ)
tdoff
3000
Eoff
100
tr
tdon
2000
tf
1000
10
0
0
10
20
30
I C (A)
40
0
50
20
30
40
50
I C (A)
Fig.15 - Typical Energy Loss vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =20A; V GE =15V
3000
10
Fig.16 - Typical Switching Time vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =20A; V GE =15V
1000
2800
Eon
tdoff
2600
2400
2000
1800
1600
Eoff
1400
1200
t (nS)
Energy (uJ)
2200
tdon
100
tr
1000
tf
800
600
400
200
0
10
0
5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
6
0
5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
www.irf.com
IRGP20B120UD-E
Fig.18 - Typical Diode I RR vs Rg
Tj=125°C; I F =20A
Fig.17 - Typical Diode I RR vs I F
Tj=125°C
45
45
40
40
35
35
30
25
IRR ( A )
Rg=5 Ω
Rg=10 Ω
20
I
RR
(A)
30
Rg=22 Ω
20
15
15
Rg=51 Ω
10
25
10
5
5
0
0
0
10
20
30
I F (A)
40
50
0
60
Fig.20 - Typical Diode Q RR
V CC =600V; V GE =15V; Tj=125°C
V CC =600V; V GE =15V
I F =20A; Tj=125°C
40
10 15 20 25 30 35 40 45 50 55
Rg (ohms)
Fig.19 - Typical Diode I RR vs dI F /dt
45
5
7000
6500
Rg=5 Ω
6000
35
Rg=10 Ω
5Ω
51 Ω
5500
50A
30
5000
Rg=22 Ω
25
Q RR ( n C )
I RR ( A )
22 Ω
10 Ω
Rg=51 Ω
20
40A
4500
30A
4000
25A
3500
20A
15
3000
10
10A
2500
5
2000
0
1500
0
www.irf.com
200
400
600
800
dI F / dt (A/µs)
1000
1200
0
200
400
600
800
1000 1200
dI F / dt (A/µs)
7
IRGP20B120UD-E
Fig.21 - Typ. Diode E rec vs. I F
Tj=125°C
2800
2600
5Ω
2400
10 Ω
22 Ω
Energy (uJ)
2200
51 Ω
2000
1800
1600
1400
1200
1000
800
0
10
20
30
40
50
60
I F (A)
Fig.23 - Typ. Gate Charge vs. V GE
I C =20A; L=600µH
Fig.22 - Typical Capacitance vs V CE
V GE =0V; f=1MHz
16
10000
600V
14
C ies
800V
1000
10
V GE ( V )
CapacItance (pF)
12
C oes
6
100
4
C res
2
0
10
0
20
40
60
V CE (V)
8
8
80
100
0
40
80
120
160
200
Q G , Total Gate Charge (nC)
www.irf.com
IRGP20B120UD-E
Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case
θ
10
1
D =0.5
0.2
0.1
0.1
0.05
P DM
0.02
0.01
t1
0.01
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + T C
SINGLE
PULSE
0.001
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
10.00000
t 1 , Rectangular Pulse Duration (sec)
www.irf.com
9
IRGP20B120UD-E
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
L
L
VCC
DUT
80 V
DUT
1000V
0
Rg
1K
Fig. CT.4 - Switching Loss Circuit
Fig. CT.3 - S.C. SOA Circuit
d iod e cla m p /
DUT
D riv er
D
C
L
900V
- 5V
DUT /
D R IV E R
DUT
VCC
Rg
Fig. CT.5 - Resistive Load Circuit
R =
DUT
VCC
IC M
VCC
Rg
10
www.irf.com
IRGP20B120UD-E
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
1000
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125°C using Fig. CT.4
25
800
80
600
60
90% ICE
800
20
600
90% test current
15
400
ICE ( A )
10
40
tr
V CE ( V )
400
ICE ( A )
V CE ( V )
tf
TEST CURRENT
200
5% VCE
200
20
10% test current
5
5% VCE
5% ICE
0
0
0
0
Eon Loss
Eof f Loss
-200
-5
-0.2
0.0
0.2
0.4
0.6
-200
0.8
-20
-0.2
-0.1
t i me (µs)
0.0
0.1
0.2
0.3
t i me (µs)
Fig. WF.3 - Typ. Diode Recovery Waveform
@ Tj=125°C using Fig. CT.4
600
30
400
20
Fig. WF.4 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
1200
250
1000
200
800
150
600
100
400
50
200
0
QRR
10
0
Peak
IRR
-200
-10
10%
Peak
IRR
-400
-20
-600
-30
-800
-40
-0.2
0.0
0.2
0.4
t i me (µs)
www.irf.com
V CE (V )
0
ICE ( A )
V CE ( V )
tRR
ICE ( A )
200
0.6
0.8
0
-50
-10
0
10
20
30
t i me (µs)
11
IRGP20B120UD-E
TO-247AD Case Outline and Dimensions
∆ Ρ Γ . Νο:
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
Data and specifications subject to change without notice.
12/99
12
www.irf.com