PD - 97100 IRFP4332PbF PDP SWITCH Features l Advanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low EPULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low QG for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l175°C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS min VDS (Avalanche) typ. RDS(ON) typ. @ 10V IRP max @ TC= 100°C TJ max 250 300 29 120 175 V V m: A °C D D G G S D S TO-247AC G D S Gate Drain Source Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Parameter VGS ID @ TC = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Max. Units ±30 V 57 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 40 IDM Pulsed Drain Current c 230 IRP @ TC = 100°C Repetitive Peak Current g 120 PD @TC = 25°C Power Dissipation 360 PD @TC = 100°C Power Dissipation 180 Linear Derating Factor 2.4 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw W 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case f Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f Typ. Max. Units ––– 0.24 ––– 0.42 ––– 40 °C/W Notes through are on page 8 www.irf.com 1 6/5/06 IRFP4332PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 250 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 170 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 29 33 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -14 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 250V, VGS = 0V VDS = 250V, VGS = 0V, TJ = 125°C IGSS gfs Gate-to-Source Forward Leakage ––– ––– 1.0 mA ––– ––– 100 nA Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 100 ––– ––– Qg Total Gate Charge ––– 99 150 Qgd Gate-to-Drain Charge ––– 35 ––– tst Shoot Through Blocking Time 100 ––– ––– ––– 520 ––– EPULSE Ciss Energy per Pulse Input Capacitance V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 35A e VDS = VGS, ID = 250µA VGS = 20V VGS = -20V S VDS = 25V, ID = 35A nC VDD = 125V, ID = 35A, VGS = 10Ve ns VDD = 200V, VGS = 15V, RG= 4.7Ω L = 220nH, C= 0.3µF, VGS = 15V µJ VDS = 200V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.3µF, VGS = 15V ––– 920 ––– ––– 5860 ––– VGS = 0V VDS = 25V Coss Output Capacitance ––– 530 ––– Crss Reverse Transfer Capacitance ––– 130 ––– VDS = 200V, RG= 5.1Ω, TJ = 100°C pF Coss eff. Effective Output Capacitance ––– 360 ––– ƒ = 1.0MHz, VGS = 0V, VDS = 0V to 200V LD Internal Drain Inductance ––– 5.0 ––– Between lead, LS Internal Source Inductance ––– 13 ––– nH D 6mm (0.25in.) G from package S and center of die contact Avalanche Characteristics Parameter Typ. Max. Units EAS Single Pulse Avalanche Energyd ––– 210 mJ EAR Repetitive Avalanche Energy c ––– 36 mJ VDS(Avalanche) Repetitive Avalanche Voltagec 300 ––– V Avalanche Currentd ––– 35 A IAS Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. ––– Typ. Max. Units ––– 57 (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol showing the 230 integral reverse p-n junction diode. TJ = 25°C, IS = 35A, VGS = 0V e (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 190 290 ns TJ = 25°C, IF = 35A, VDD = 50V nC di/dt = 100A/µs e Qrr 2 Reverse Recovery Charge ––– 820 1230 www.irf.com IRFP4332PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 100 BOTTOM 5.5V 10 100 1 1 10 BOTTOM 5.5V 10 ≤ 60µs PULSE WIDTH Tj = 25°C 0.1 ≤ 60µs PULSE WIDTH Tj = 175°C 1 100 0.1 1 VDS , Drain-to-Source Voltage (V) 100 Fig 2. Typical Output Characteristics 3.5 100 RDS(on) , Drain-to-Source On Resistance 1000 TJ = 175°C 10 TJ = 25°C 1 0.1 VDS = 25V ≤ 60µs PULSE WIDTH 0.01 4.0 5.0 ID = 35A 6.0 7.0 VGS = 10V 3.0 2.5 (Normalized) ID, Drain-to-Source Current(Α) 10 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 2.0 1.5 1.0 0.5 0.0 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1000 1000 L = 220nH C = 0.3µF 100°C 25°C L = 220nH C = Variable 100°C 25°C 800 Energy per pulse (µJ) 800 Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 600 400 600 400 200 200 0 0 150 160 170 180 190 200 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 100 110 120 130 140 150 160 170 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFP4332PbF 1000 1400 L = 220nH C= 0.3µF C= 0.2µF C= 0.1µF 1000 ISD , Reverse Drain Current (A) Energy per pulse (µJ) 1200 800 600 400 200 100 TJ = 175°C 10 1 TJ = 25°C VGS = 0V 0 0.1 25 50 75 100 125 150 0.2 Temperature (°C) Fig 7. Typical EPULSE vs.Temperature 10000 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 20 Coss = Cds + Cgd Ciss 6000 0.6 0.8 1.0 1.2 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 8000 0.4 VSD, Source-to-Drain Voltage (V) 4000 Coss 2000 ID= 35A VDS = 200V 16 VDS = 125V VDS = 50V 12 8 4 Crss 0 0 1 10 100 0 1000 Fig 9. Typical Capacitance vs.Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) ID, Drain Current (A) 50 40 30 20 10 0 75 100 125 150 175 TJ, Junction Temperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 120 160 Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 60 50 80 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 25 40 OPERATION IN THIS AREA LIMITED BY R DS (on) 1µsec 100 100µsec 10µsec 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 1000 0.40 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (Ω) IRFP4332PbF ID = 35A 0.30 0.20 0.10 TJ = 125°C TJ = 25°C ID 8.3A 13A BOTTOM 35A TOP 800 600 400 200 0.00 0 5 6 7 8 9 10 25 VGS, Gate-to-Source Voltage (V) 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 13. On-Resistance Vs. Gate Voltage Fig 14. Maximum Avalanche Energy Vs. Temperature 5.0 180 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 160 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 50 4.0 ID = 250µA 3.0 2.0 140 120 100 80 60 40 20 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 50 TJ , Temperature ( °C ) 75 100 125 150 175 Case Temperature (°C) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 τJ 0.05 0.01 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 Ci= τi/Ri Ci= τi/Ri τ2 R3 R3 τ3 Ri (°C/W) τC τ τ3 τι (sec) 0.069565 0.000074 0.172464 0.001546 0.178261 0.019117 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP4332PbF Driver Gate Drive D.U.T + - - * RG • • • • P.W. Period *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD ** + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. Id Vds 50KΩ 12V Vgs .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Fig 20a. Gate Charge Test Circuit 6 Qgs1 Qgs2 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFP4332PbF A RG PULSE A C DRIVER L VCC B RG PULSE B Ipulse DUT tST Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFP4332PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H AS SEMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2001 IN T HE AS SEMBLY LINE "H" Note: "P" in as s embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRF PE30 56 135H 57 DAT E CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.35mH, RG = 25Ω, IAS = 35A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/06 8 www.irf.com