PD - 96173 IRFB5615PbF DIGITAL AUDIO MOSFET Features • Key Parameters Optimized for Class-D Audio Amplifier Applications • Low RDSON for Improved Efficiency • Low QG and QSW for Better THD and Improved Efficiency • Low QRR for Better THD and Lower EMI Key Parameters VDS RDS(ON) typ. @ 10V Qg typ. Qsw typ. RG(int) typ. TJ max 150 32 26 11 2.7 175 V m: nC nC Ω °C • 175°C Operating Junction Temperature for D Ruggedness D • Can Deliver up to 300W per Channel into 4Ω Load in Half-Bridge Configuration Amplifier G G S D S TO-220AB G D S Gate Drain Source Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Max. Drain-to-Source Voltage 150 Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current ±20 35 25 140 Power Dissipation Power Dissipation 144 72 f f c Units V A W 0.96 -55 to + 175 Linear Derating Factor Operating Junction and W/°C Storage Temperature Range °C Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 300 x x 10lb in (1.1N m) Thermal Resistance f Parameter RθJC Junction-to-Case RθCS RθJA Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f Typ. ––– 0.50 Max. 1.045 ––– ––– 62 Units °C/W Notes through are on page 2 www.irf.com 1 09/05/08 IRFB5615PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Parameter 150 ––– ––– 0.18 ––– ––– VGS(th) Static Drain-to-Source On-Resistance Gate Threshold Voltage ––– 3.0 32 ––– 39 5.0 ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -13 ––– ––– 20 Gate-to-Source Forward Leakage ––– ––– ––– ––– 250 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 35 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 26 6.4 40 ––– Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 2.2 9.0 ––– ––– Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 8.9 11 ––– ––– Internal Gate Resistance Turn-On Delay Time ––– ––– 2.7 8.9 5.0 ––– Rise Time Turn-Off Delay Time ––– ––– 23.1 17.2 ––– ––– Fall Time Input Capacitance ––– ––– 13.1 1750 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 155 40 ––– ––– ––– 175 ––– LD Effective Output Capacitance Internal Drain Inductance ––– 4.5 ––– LS Internal Source Inductance BVDSS ∆ΒVDSS/∆TJ RDS(on) IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss e mV/°C µA nA S 7.5 VDS = 150V, VGS = 0V VDS = 150V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 50V, ID = 21A VDS =75V nC VGS = 10V ID = 21A See Fig. 6 and 19 Ω e VDD = 75V, VGS = 10V ns ID = 21A RG = 2.4Ω VGS = 0V pF VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 120V Between lead, nH ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 21A V VDS = VGS, ID = 100µA ––– 6mm (0.25in.) from package D G S and center of die contact Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy g Avalanche Current Repetitive Avalanche Energy d Typ. Max. Units ––– 109 mJ See Fig. 14, 15, 17a, 17b g A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current ISM VSD trr Qrr (Body Diode) Pulsed Source Current c Min. ––– Typ. Max. Units ––– Conditions MOSFET symbol 35 A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V TJ = 25°C, IF = 21A, VR =120V di/dt = 100A/µs (Body Diode) Diode Forward Voltage Reverse Recovery Time ––– ––– 140 ––– ––– ––– 80 1.3 120 V ns Reverse Recovery Charge ––– 312 468 nC e e Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.51mH, RG = 25Ω, IAS = 21A. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Rθ is measured at TJ of approximately 90°C. Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information www.irf.com IRFB5615PbF 1000 1000 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) 100 BOTTOM 10 1 5.0V 0.1 100 BOTTOM 10 5.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C Tj = 175°C 0.1 0.01 0.1 1 10 0.1 100 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 3.0 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) TJ = 175°C TJ = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH ID = 21A VGS = 10V 2.5 2.0 1.5 1.0 0.5 0.1 2 4 6 8 10 12 14 16 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED Crss = C gd Coss = C ds + C gd 10000 C, Capacitance (pF) VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) TOP Ciss 1000 Coss Crss 100 ID= 21A 12.0 VDS= 120V VDS= 75V 10.0 VDS= 30V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 35 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFB5615PbF 1000 100 T J = 175°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 100µsec 1msec 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 10 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 1000 Fig 8. Maximum Safe Operating Area 6.0 35 5.5 VGS(th) , Gate threshold Voltage (V) 40 30 ID, Drain Current (A) 100 VDS, Drain-to-Source Voltage (V) 25 20 15 10 5 5.0 4.5 4.0 3.5 ID = 100µA 3.0 ID = 250uA ID = 1.0mA ID = 1.0A 2.5 2.0 1.5 0 1.0 25 50 75 100 125 150 175 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ 0.01 0.001 1E-006 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 0.0001 τ4 τ4 Ri (°C/W) τi (sec) 0.02324 0.000008 0.26212 0.000106 0.50102 0.001115 0.25880 0.005407 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R4 R4 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 0.4 500 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( Ω) IRFB5615PbF ID = 21A 0.35 0.3 0.25 0.2 0.15 0.1 TJ = 125°C 0.05 T J = 25°C 0 4 6 8 10 12 14 ID TOP 2.8A 5.3A BOTTOM 21A 450 400 350 300 250 200 150 100 50 0 16 18 20 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 21A 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRFB5615PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + V DD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor InductorCurrent Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS 20V A 0.01Ω tp I AS Fig 17a. Unclamped Inductive Test Circuit RD V DS Fig 17b. Unclamped Inductive Waveforms VDS 90% V GS D.U.T. RG + - V DD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 18a. Switching Time Test Circuit tr t d(off) Fig 18b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 19a. Gate Charge Test Circuit 6 Qgs1 Qgs2 Qgd Qgodr Fig 19b. Gate Charge Waveform www.irf.com IRFB5615PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& ,17(51$7,21$/ 3$57180%(5 5(&7,),(5 /2*2 '$7(&2'( 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH $66(0%/< /27&2'( <($5 :((. /,1(& TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2008 www.irf.com 7