IRF IRLIB4343PBF

PD - 95755
DIGITAL AUDIO MOSFET
IRLIB4343PbF
Features
l
l
l
l
l
l
l
l
Advanced Process Technology
Key Parameters Optimized for Class-D Audio
Amplifier Applications
Low RDSON for Improved Efficiency
Low Qg and Qsw for Better THD and Improved
Efficiency
Low Qrr for Better THD and Lower EMI
175°C Operating Junction Temperature for
Ruggedness
Repetitive Avalanche Capability for Robustness and
Reliability
Lead-Free
Key Parameters
VDS
RDS(ON) typ. @ VGS = 10V
RDS(ON) typ. @ VGS = 4.5V
Qg typ.
TJ max
55
42
57
28
175
V
m:
m:
nC
°C
D
G
TO-220 Full-Pak
S
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier
applications.
Absolute Maximum Ratings
Max.
Units
55
±20
V
A
Continuous Drain Current, VGS @ 10V
19
13
Pulsed Drain Current
Power Dissipation
80
39
W
20
0.26
W/°C
-40 to + 175
°C
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
c
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Mounting torque, 6-32 or M3 screw
x
x
10lb in (1.1N m)
Thermal Resistance
f
RθJC
Junction-to-Case
RθJA
Junction-to-Ambient
Parameter
f
Typ.
Max.
Units
–––
3.84
°C/W
–––
65
Notes  through … are on page 7
www.irf.com
1
8/24/04
IRLIB4343PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
∆VGS(th)/∆TJ
IDSS
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
55
–––
–––
15
–––
–––
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 4.7A
Static Drain-to-Source On-Resistance
–––
–––
42
57
50
65
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
1.0
–––
–––
-4.4
–––
–––
V
mV/°C
Drain-to-Source Leakage Current
–––
–––
–––
–––
2.0
25
µA
VDS = 55V, VGS = 0V
e
e
VGS = 4.5V, ID = 3.8A
VDS = VGS, ID = 250µA
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 20V
gfs
Forward Transconductance
Total Gate Charge
8.8
–––
–––
28
–––
42
S
VGS = -20V
VDS = 25V, ID = 19A
Pre-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
3.5
9.5
–––
–––
VGS = 10V
Gate Charge Overdrive
Turn-On Delay Time
–––
–––
15
5.7
–––
–––
Rise Time
Turn-Off Delay Time
–––
–––
19
23
–––
–––
See Fig. 6 and 19
VDD = 28V, VGS = 10V
ID = 19A
Fall Time
Input Capacitance
–––
–––
5.3
740
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
150
59
–––
–––
Effective Output Capacitance
Internal Drain Inductance
–––
–––
250
4.5
–––
–––
Qg
Qgs
Qgd
Qgodr
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
LD
VDS = 44V
ID = 19A
e
ns
RG = 2.5Ω
pF
VGS = 0V
VDS = 50V
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to -44V
Between lead,
nH
LS
Internal Source Inductance
–––
7.5
–––
D
6mm (0.25in.)
from package
and center of die contact
G
S
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
g
Repetitive Avalanche Energy
Typ.
d
Max.
Units
–––
130
See Fig. 14, 15, 17a, 17b
g
mJ
A
mJ
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
c
Min.
Typ. Max. Units
–––
–––
19
–––
–––
110
A
V
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 19A, VGS = 0V
(Body Diode)
VSD
trr
Qrr
2
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
–––
–––
52
100
1.2
78
150
Conditions
MOSFET symbol
showing the
ns
nC
D
S
e
TJ = 25°C, IF = 19A
di/dt = 100A/µs
e
www.irf.com
IRLIB4343PbF
1000
1000
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.5V
2.3V
100
BOTTOM
10
2.3V
1
≤ 60µs PULSE WIDTH
Tj = 25°C
100
BOTTOM
10
2.3V
1
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 25°C
100.0
T J = 175°C
10.0
1.0
VDS = 30V
≤ 60µs PULSE WIDTH
0.1
0
2
4
6
8
10
ID = 19A
VGS = 10V
2.0
1.5
1.0
0.5
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
10000
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.5V
2.3V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
Ciss
Coss
Crss
100
ID= 19A
VDS= 44V
VDS= 28V
VDS= 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 19
0
10
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLIB4343PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
100.0
100
TJ = 175°C
10.0
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TJ = 25°C
100µsec
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
10
VSD, Source-to-Drain Voltage (V)
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
20
VGS(th) Gate threshold Voltage (V)
2.0
15
ID, Drain Current (A)
10msec
10
5
1.5
ID = 250µA
1.0
0.5
0
25
50
75
100
125
150
-75 -50 -25
175
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W)
1.0096
τi (sec)
0.001090
0.9019
0.038534
1.9296
2.473000
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
600
200
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRLIB4343PbF
ID = 19A
150
100
T J = 125°C
50
T J = 25°C
0
2.0
4.0
6.0
8.0
ID
TOP
2.7A
3.3A
BOTTOM 13A
500
400
300
200
100
0
10.0
25
VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 13A
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
t av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRLIB4343PbF
Driver Gate Drive
D.U.T
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Inductor Current
Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
15V
LD
VDS
DRIVER
L
VDS
+
VDD -
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Unclamped Inductive Test Circuit
V(BR)DSS
Fig 18a. Switching Time Test Circuit
VDS
tp
90%
10%
VGS
td(on)
I AS
Fig 17b. Unclamped Inductive Waveforms
tr
td(off)
tf
Fig 18b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.irf.com
IRLIB4343PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E XAMP L E :
T H IS IS AN IR F I840G
WIT H AS S E MB L Y
L OT CODE 3432
AS S E MB L E D ON WW 24 1999
IN T H E AS S E MB L Y L IN E "K "
P AR T N U MB E R
IN T E R N AT IONAL
R E CT IF IE R
L OGO
IR F I840G
924K
34
Note: "P" in assembly line
position indicates "Lead-Free"
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.5mH, RG = 25Ω, IAS = 13A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
AS S E MB L Y
L OT CODE
32
D AT E COD E
YE AR 9 = 1999
WE E K 24
L IN E K
„ Rθ is measured at TJ of approximately 90°C.
… Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive
avalanche information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
www.irf.com
7