PD - 95755 DIGITAL AUDIO MOSFET IRLIB4343PbF Features l l l l l l l l Advanced Process Technology Key Parameters Optimized for Class-D Audio Amplifier Applications Low RDSON for Improved Efficiency Low Qg and Qsw for Better THD and Improved Efficiency Low Qrr for Better THD and Lower EMI 175°C Operating Junction Temperature for Ruggedness Repetitive Avalanche Capability for Robustness and Reliability Lead-Free Key Parameters VDS RDS(ON) typ. @ VGS = 10V RDS(ON) typ. @ VGS = 4.5V Qg typ. TJ max 55 42 57 28 175 V m: m: nC °C D G TO-220 Full-Pak S Description This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Max. Units 55 ±20 V A Continuous Drain Current, VGS @ 10V 19 13 Pulsed Drain Current Power Dissipation 80 39 W 20 0.26 W/°C -40 to + 175 °C Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V c Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Mounting torque, 6-32 or M3 screw x x 10lb in (1.1N m) Thermal Resistance f RθJC Junction-to-Case RθJA Junction-to-Ambient Parameter f Typ. Max. Units ––– 3.84 °C/W ––– 65 Notes through are on page 7 www.irf.com 1 8/24/04 IRLIB4343PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 55 ––– ––– 15 ––– ––– V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 4.7A Static Drain-to-Source On-Resistance ––– ––– 42 57 50 65 Gate Threshold Voltage Gate Threshold Voltage Coefficient 1.0 ––– ––– -4.4 ––– ––– V mV/°C Drain-to-Source Leakage Current ––– ––– ––– ––– 2.0 25 µA VDS = 55V, VGS = 0V e e VGS = 4.5V, ID = 3.8A VDS = VGS, ID = 250µA IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 nA VDS = 55V, VGS = 0V, TJ = 125°C VGS = 20V gfs Forward Transconductance Total Gate Charge 8.8 ––– ––– 28 ––– 42 S VGS = -20V VDS = 25V, ID = 19A Pre-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 3.5 9.5 ––– ––– VGS = 10V Gate Charge Overdrive Turn-On Delay Time ––– ––– 15 5.7 ––– ––– Rise Time Turn-Off Delay Time ––– ––– 19 23 ––– ––– See Fig. 6 and 19 VDD = 28V, VGS = 10V ID = 19A Fall Time Input Capacitance ––– ––– 5.3 740 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 150 59 ––– ––– Effective Output Capacitance Internal Drain Inductance ––– ––– 250 4.5 ––– ––– Qg Qgs Qgd Qgodr td(on) tr td(off) tf Ciss Coss Crss Coss LD VDS = 44V ID = 19A e ns RG = 2.5Ω pF VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V Between lead, nH LS Internal Source Inductance ––– 7.5 ––– D 6mm (0.25in.) from package and center of die contact G S Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current g Repetitive Avalanche Energy Typ. d Max. Units ––– 130 See Fig. 14, 15, 17a, 17b g mJ A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current (Body Diode) ISM Pulsed Source Current c Min. Typ. Max. Units ––– ––– 19 ––– ––– 110 A V G integral reverse p-n junction diode. TJ = 25°C, IS = 19A, VGS = 0V (Body Diode) VSD trr Qrr 2 Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ––– ––– ––– ––– 52 100 1.2 78 150 Conditions MOSFET symbol showing the ns nC D S e TJ = 25°C, IF = 19A di/dt = 100A/µs e www.irf.com IRLIB4343PbF 1000 1000 VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics TJ = 25°C 100.0 T J = 175°C 10.0 1.0 VDS = 30V ≤ 60µs PULSE WIDTH 0.1 0 2 4 6 8 10 ID = 19A VGS = 10V 2.0 1.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 1000 0 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP Ciss Coss Crss 100 ID= 19A VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 19 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLIB4343PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 100 TJ = 175°C 10.0 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 25°C 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 10 VSD, Source-to-Drain Voltage (V) 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 20 VGS(th) Gate threshold Voltage (V) 2.0 15 ID, Drain Current (A) 10msec 10 5 1.5 ID = 250µA 1.0 0.5 0 25 50 75 100 125 150 -75 -50 -25 175 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) 1.0096 τi (sec) 0.001090 0.9019 0.038534 1.9296 2.473000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 600 200 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRLIB4343PbF ID = 19A 150 100 T J = 125°C 50 T J = 25°C 0 2.0 4.0 6.0 8.0 ID TOP 2.7A 3.3A BOTTOM 13A 500 400 300 200 100 0 10.0 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 13A 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). t av = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRLIB4343PbF Driver Gate Drive D.U.T + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Inductor Current Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Unclamped Inductive Test Circuit V(BR)DSS Fig 18a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 17b. Unclamped Inductive Waveforms tr td(off) tf Fig 18b. Switching Time Waveforms Id Vds Vgs L VCC DUT 0 Vgs(th) 1K Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.irf.com IRLIB4343PbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E XAMP L E : T H IS IS AN IR F I840G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " P AR T N U MB E R IN T E R N AT IONAL R E CT IF IE R L OGO IR F I840G 924K 34 Note: "P" in assembly line position indicates "Lead-Free" Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.5mH, RG = 25Ω, IAS = 13A. Pulse width ≤ 400µs; duty cycle ≤ 2%. AS S E MB L Y L OT CODE 32 D AT E COD E YE AR 9 = 1999 WE E K 24 L IN E K Rθ is measured at TJ of approximately 90°C. Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04 www.irf.com 7