PD - 96918A IRFB4212PbF DIGITAL AUDIO MOSFET Features • Key parameters optimized for Class-D audio amplifier applications • Low RDSON for improved efficiency • Low QG and QSW for better THD and improved efficiency • Low QRR for better THD and lower EMI • 175°C operating junction temperature for Key Parameters VDS 100 RDS(ON) typ. @ 10V 72.5 V m: Qg typ. 15 nC Qsw typ. 8.3 nC RG(int) typ. 2.2 Ω TJ max 175 °C ruggedness D • Can deliver up to 150W per channel into 4Ω load in half-bridge topology G S TO-220AB Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 100 VGS Gate-to-Source Voltage ±20 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 18 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 13 IDM Pulsed Drain Current c 57 PD @TC = 25°C Power Dissipation f 60 PD @TC = 100°C Power Dissipation f 30 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range W 0.4 -55 to + 175 Soldering Temperature, for 10 seconds W/°C °C 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw A 10lbxin (1.1Nxm) Thermal Resistance Parameter Typ. Max. RθJC Junction-to-Case f ––– 2.5 RθCS Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f 0.50 ––– ––– 62 RθJA Units °C/W Notes through are on page 2 www.irf.com 1 9/16/05 IRFB4212PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BV DSS Drain-to-Source Breakdown Voltage 100 ––– ––– ∆ΒV DSS/∆T J Breakdown Voltage Temp. Coefficient ––– 0.09 ––– V/°C Reference to 25°C, ID = 1mA R DS(on) Static Drain-to-Source On-Resistance ––– 58 72.5 mΩ V GS(th) Gate Threshold Voltage 3.0 ––– 5.0 V ∆V GS(th)/∆T J Gate Threshold Voltage Coefficient ––– -13 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 g fs Forward Transconductance 11 ––– ––– Qg V V GS = 0V, ID = 250µA V GS = 10V, ID = 13A V DS = 100V, V GS = 0V V DS = 100V, V GS = 0V, T J = 125°C nA V GS = 20V V GS = -20V S V DS = 50V, ID = 13A Total Gate Charge ––– 15 23 Q gs1 Pre-Vth Gate-to-Source Charge ––– 3.3 ––– Q gs2 Post-Vth Gate-to-Source Charge ––– 1.4 ––– Q gd Gate-to-Drain Charge ––– 6.9 ––– ID = 13A Q godr Gate Charge Overdrive ––– 3.4 ––– See Fig. 6 and 19 Q sw Switch Charge (Q gs2 + Q gd) ––– 8.3 ––– R G(int) Internal Gate Resistance ––– 2.2 ––– e V DS = V GS, ID = 250µA V DS = 80V nC V GS = 10V Ω e td(on) Turn-On Delay Time ––– 7.7 ––– V DD = 50V, V GS = 10V tr Rise Time ––– 28 ––– ID = 13A td(off) Turn-Off Delay Time ––– 14 ––– tf Fall Time ––– 3.9 ––– C iss Input Capacitance ––– 550 ––– C oss Output Capacitance ––– 66 ––– C rss Reverse Transfer Capacitance ––– 35 ––– C oss Effective Output Capacitance ––– 350 ––– V GS = 0V, V DS = 0V to 80V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– ns R G = 2.5Ω V GS = 0V pF V DS = 50V ƒ = 1.0MHz, nH See Fig.5 D 6mm (0.25in.) from package G S and center of die contact Avalanche Characteristics Parameter E AS Single Pulse Avalanche Energy IAR Avalanche Current E AR Repetitive Avalanche Energy g d Typ. Max. Units ––– 25 mJ See Fig. 14, 15, 17a, 17b g A mJ Diode Characteristics Parameter IS @ T C = 25°C Continuous Source Current Min. Typ. Max. Units Conditions MOSFET symbol ––– ––– 18 ––– ––– 57 showing the integral reverse ISM (Body Diode) Pulsed Source Current V SD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. T J = 25°C, IS = 13A, V GS = 0V trr Reverse Recovery Time ––– 41 62 ns T J = 25°C, IF = 13A Q rr Reverse Recovery Charge ––– 69 100 nC di/dt = 100A/µs c A Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.32mH, RG = 25Ω, IAS = 13A. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 e e Rθ is measured at TJ of approximately 90°C. Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information www.irf.com IRFB4212PbF 100 100 BOTTOM VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 10 6.0V ≤ 60µs PULSE WIDTH Tj = 25°C BOTTOM 6.0V 10 ≤ 60µs PULSE WIDTH Tj = 175°C 1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 100.0 3.0 10.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics TJ = 175°C TJ = 25°C 1.0 VDS = 50V ≤ 60µs PULSE WIDTH 0.1 2 4 6 8 ID = 13A VGS = 10V 2.5 2.0 1.5 1.0 0.5 10 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1000 Ciss Coss 100 Crss ID= 13A VDS = 80V 16 VDS= 50V VDS= 20V 12 8 4 0 10 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFB4212PbF 1000 10.0 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 100.0 TJ = 175°C 1.0 TJ = 25°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V DC 0.1 0.1 0.0 0.5 1.0 1 1.5 10 100 1000 VSD , Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 20 VGS(th) Gate threshold Voltage (V) 5.0 ID , Drain Current (A) 16 12 8 4 4.0 ID = 250µA 3.0 0 2.0 25 50 75 100 125 150 175 -75 -50 -25 TJ , Junction Temperature (°C) 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) R4 R4 τ4 τ4 τi (sec) 0.0489 0.00000 0.3856 0.000062 1.3513 0.001117 0.7140 0.013125 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 120 0.5 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (Ω) IRFB4212PbF ID = 13A 0.4 0.3 0.2 TJ = 125°C 0.1 TJ = 25°C 0.0 6 8 10 12 14 ID 3.2A 5.7A BOTTOM 13A TOP 100 80 60 40 20 0 16 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 10 Duty Cycle = Single Pulse Avalanche Current (A) 0.01 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 30 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 13A 25 20 15 10 5 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRFB4212PbF D.U.T Driver Gate Drive - - - D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + RG Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 17a. Unclamped Inductive Test Circuit LD Fig 17b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 18a. Switching Time Test Circuit tr td(off) tf Fig 18b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.irf.com IRFB4212PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS SEMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INTERNATIONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 9/05 www.irf.com 7