IRF IRFIB6N60A

PD - 91813
SMPS MOSFET
IRFIB6N60A
HEXFET® Power MOSFET
Applications
l Switch Mode Power Supply ( SMPS )
l Uninterruptable Power Supply
l High speed power switching
l High Voltage Isolation = 2.5KVRMS†
Benefits
Low Gate Charge Qg results in Simple
Drive Requirement
l Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current
VDSS
Rds(on) max
ID
600V
0.75W
5.5A
l
TO-220 FULLPAK
G DS
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
Max.
5.5
3.5
37
60
0.48
± 30
5.0
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typical SMPS Topologies:
l
l
Single Transistor Forward
Active Clamped Forward
Notes 
through †are on page 8
www.irf.com
1
01/12/99
IRFIB6N60A
Static @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
RDS(on)
VGS(th)
Parameter
Drain-to-Source Breakdown Voltage
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
600
–––
2.0
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
0.75
W
VGS = 10V, ID = 3.3A „
4.0
V
VDS = VGS, ID = 250µA
25
VDS = 600V, VGS = 0V
µA
250
VDS = 480V, VGS = 0V, TJ = 150°C
100
V GS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
5.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
13
25
30
22
1400
180
7.1
1957
49
96
Max. Units
Conditions
–––
S
VDS = 25V, ID = 5.5A
49
ID = 9.2A
13
nC
VDS = 400V
20
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 300V
–––
ID = 9.2A
ns
–––
RG = 9.1W
–––
RD = 35.5W,See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 480V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 480V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
290
9.2
6.0
mJ
A
mJ
Typ.
Max.
Units
–––
–––
2.1
65
°C/W
Thermal Resistance
Parameter
RqJC
RqJA
Junction-to-Case
Junction-to-Ambient
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 5.5
showing the
A
G
integral reverse
––– –––
37
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 9.2A, VGS = 0V „
––– 530 800
ns
TJ = 25°C, IF = 9.2A
––– 3.0 4.4
µC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFIB6N60A
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
1
4.7V
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
4.7V
20µs PULSE WIDTH
TJ = 150 °C
1
1
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
TJ = 150 ° C
TJ = 25 ° C
1
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
100
10
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10.0
ID = 9.2A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFIB6N60A
2400
VGS , Gate-to-Source Voltage (V)
2000
C, Capacitance (pF)
20
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
1600
Coss
1200
800
Crss
400
0
10
100
400V
VDS = 480V
VDS = 300V
VDS = 120V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
A
1
ID = 9.2A
0
1000
30
40
50
1000
100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
TJ = 150 ° C
1
TJ = 25 ° C
0.1
0.2
0.5
0.7
1.0
Fig 7. Typical Source-Drain Diode
Forward Voltage
10us
10
100us
1ms
1
10ms
V GS = 0 V
VSD ,Source-to-Drain Voltage (V)
4
10
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1.2
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFIB6N60A
6.0
VGS
5.0
RG
ID , Drain Current (A)
RD
VDS
D.U.T.
+
-V DD
4.0
10V
Pulse Width £ 1 µs
Duty Factor £ 0.1 %
3.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
1.0
90%
0.0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
P DM
0.05
0.1
t1
0.02
t2
0.01
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
L
VDS
D.U.T
RG
IAS
20V
DRIVER
+
- VDD
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
IRFIB6N60A
600
TOP
500
BOTTOM
ID
4.1A
5.8A
9.2A
400
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
V(BR)DSS
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFIB6N60A
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
· Low Stray Inductance
· Ground Plane
· Low Leakage Inductance
Current Transformer
+
D.U.T
ƒ
+
‚
-
-
„
+

RG
·
·
·
·
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFIB6N60A
Package Outline
TO-220 Fullpak Outline
Dimensions are shown in millimeters (inches)
10.60 (.417)
10.40 (.409)
ø
3.40 (.133)
3.10 (.123)
4.80 (.189)
4.60 (.181)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
2.80 (.110)
2.60 (.102)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1
2
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
A
3X
1.40 (.055)
1.05 (.042)
3X
0.90 (.035)
0.70 (.028)
3X
M A M
0.25 (.010)
B
2.54 (.100)
2X
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
Part Marking Information
TO-220 Fullpak
EXAMPLE : THIS IS AN IRFI840G
WITH ASSEMBLY
LOT CODE E401
A
INTERNATIONAL
IRFI840G
RECTIFIER
LOGO
PART NUMBER
E401 9245
ASSEMBLY
LOT CODE
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 6.8mH
RG = 25W, IAS = 9.2A. (See Figure 12)
ƒ ISD £ 9.2A, di/dt £ 50A/µs, VDD £ V(BR)DSS,
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
„ Pulse width £ 300µs; duty cycle £ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
† t=60s, f=60Hz
TJ £ 150°C
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/
Data and specifications subject to change without notice.
5/99
8
www.irf.com