PD - 91813 SMPS MOSFET IRFIB6N60A HEXFET® Power MOSFET Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching l High Voltage Isolation = 2.5KVRMS Benefits Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current VDSS Rds(on) max ID 600V 0.75W 5.5A l TO-220 FULLPAK G DS Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. 5.5 3.5 37 60 0.48 ± 30 5.0 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Typical SMPS Topologies: l l Single Transistor Forward Active Clamped Forward Notes through are on page 8 www.irf.com 1 01/12/99 IRFIB6N60A Static @ TJ = 25°C (unless otherwise specified) V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 600 ––– 2.0 ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA 0.75 W VGS = 10V, ID = 3.3A 4.0 V VDS = VGS, ID = 250µA 25 VDS = 600V, VGS = 0V µA 250 VDS = 480V, VGS = 0V, TJ = 150°C 100 V GS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 5.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 13 25 30 22 1400 180 7.1 1957 49 96 Max. Units Conditions ––– S VDS = 25V, ID = 5.5A 49 ID = 9.2A 13 nC VDS = 400V 20 VGS = 10V, See Fig. 6 and 13 ––– VDD = 300V ––– ID = 9.2A ns ––– RG = 9.1W ––– RD = 35.5W,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 480V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 480V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 290 9.2 6.0 mJ A mJ Typ. Max. Units ––– ––– 2.1 65 °C/W Thermal Resistance Parameter RqJC RqJA Junction-to-Case Junction-to-Ambient Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 5.5 showing the A G integral reverse ––– ––– 37 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 9.2A, VGS = 0V ––– 530 800 ns TJ = 25°C, IF = 9.2A ––– 3.0 4.4 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFIB6N60A 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 1 4.7V 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 10 4.7V 20µs PULSE WIDTH TJ = 150 °C 1 1 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 TJ = 150 ° C TJ = 25 ° C 1 0.1 4.0 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics 100 10 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10.0 ID = 9.2A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFIB6N60A 2400 VGS , Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) 20 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd Ciss 1600 Coss 1200 800 Crss 400 0 10 100 400V VDS = 480V VDS = 300V VDS = 120V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 A 1 ID = 9.2A 0 1000 30 40 50 1000 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 I D , Drain Current (A) ISD , Reverse Drain Current (A) 20 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.2 0.5 0.7 1.0 Fig 7. Typical Source-Drain Diode Forward Voltage 10us 10 100us 1ms 1 10ms V GS = 0 V VSD ,Source-to-Drain Voltage (V) 4 10 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.2 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFIB6N60A 6.0 VGS 5.0 RG ID , Drain Current (A) RD VDS D.U.T. + -V DD 4.0 10V Pulse Width £ 1 µs Duty Factor £ 0.1 % 3.0 Fig 10a. Switching Time Test Circuit 2.0 VDS 1.0 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 P DM 0.05 0.1 t1 0.02 t2 0.01 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V L VDS D.U.T RG IAS 20V DRIVER + - VDD 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit A EAS , Single Pulse Avalanche Energy (mJ) IRFIB6N60A 600 TOP 500 BOTTOM ID 4.1A 5.8A 9.2A 400 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) V(BR)DSS tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 12V .2µF .3µF 10 V QGS QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform 6 D.U.T. IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFIB6N60A Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations · Low Stray Inductance · Ground Plane · Low Leakage Inductance Current Transformer + D.U.T + - - + RG · · · · dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. D= Period + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFIB6N60A Package Outline TO-220 Fullpak Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) 4.80 (.189) 4.60 (.181) -A3.70 (.145) 3.20 (.126) 16.00 (.630) 15.80 (.622) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 1.15 (.045) MIN. NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 1 2 3 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B- 13.70 (.540) 13.50 (.530) C A 3X 1.40 (.055) 1.05 (.042) 3X 0.90 (.035) 0.70 (.028) 3X M A M 0.25 (.010) B 2.54 (.100) 2X 0.48 (.019) 0.44 (.017) 2.85 (.112) 2.65 (.104) D B MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) Part Marking Information TO-220 Fullpak EXAMPLE : THIS IS AN IRFI840G WITH ASSEMBLY LOT CODE E401 A INTERNATIONAL IRFI840G RECTIFIER LOGO PART NUMBER E401 9245 ASSEMBLY LOT CODE Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 6.8mH RG = 25W, IAS = 9.2A. (See Figure 12) ISD £ 9.2A, di/dt £ 50A/µs, VDD £ V(BR)DSS, DATE CODE (YYWW) YY = YEAR WW = WEEK Pulse width £ 300µs; duty cycle £ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS t=60s, f=60Hz TJ £ 150°C WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 5/99 8 www.irf.com