PD-91866B IRFBA22N50A SMPS MOSFET HEXFET® Power MOSFET Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptible Power Supply l High Speed Power Switching Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current l Effective Coss Specified (See AN1001) VDSS RDS(on) max ID 0.23Ω 24A 500V Super-220™ (TO-273AA) Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Recommended clip force Max. 24 15 96 340 2.7 ± 30 3.4 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) 20 N Applicable Off Line SMPS Topologies: l l Full Bridge Converters Power Factor Correction Boost Notes through www.irf.com are on page 8 1 12/12/00 IRFBA22N50A Static @ TJ = 25°C (unless otherwise specified) V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 500 ––– 2.0 ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, I D = 250µA 0.23 Ω VGS = 10V, ID = 13.8A 4.0 V VDS = VGS, ID = 250µA 25 VDS = 500V, VGS = 0V µA 250 VDS = 400V, VGS = 0V, TJ = 125°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. 12 ––– ––– ––– ––– ––– ––– ––– ––– 20 ––– 66 ––– 46 ––– 44 ––– 3397 ––– 505 ––– 17 ––– 4884 ––– 134 ––– 154 Max. Units Conditions ––– S VDS = 50V, ID = 13.8A 114 ID = 23A 28 nC VDS = 400V 47 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 23A ns ––– RG = 4.3Ω ––– RD = 10.6Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 1180 24 34 mJ A mJ Typ. Max. Units ––– 0.50 ––– 0.37 ––– 58 °C/W Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 23 ––– ––– showing the A G integral reverse ––– ––– 92 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 23A, VGS = 0V ––– 490 735 ns TJ = 25°C, IF = 23A ––– 6.4 9.6 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFBA22N50A 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 1 4.5V 20µs PULSE WIDTH T = 25 C ° J 0.1 0.1 1 10 10 4.5V 100 TJ = 150 ° C 10 TJ = 25 ° C V DS = 50V 20µs PULSE WIDTH 8.0 9.0 10.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 7.0 1 10 100 Fig 2. Typical Output Characteristics 100 6.0 ° J VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 5.0 20µs PULSE WIDTH T = 150 C 1 0.1 VDS , Drain-to-Source Voltage (V) 1 4.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP I D = 23A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFBA22N50A 7000 VGS , Gate-to-Source Voltage (V) 6000 C, Capacitance (pF) 20 V G S = 0V, f = 1M Hz C is s = Cg s + C g d , Cd s SHOR TED C rs s = C g d C o s s = Cd s + C g d 5000 4000 C iss 3000 C oss 2000 1000 ID = 23A 16 12 8 4 C rss 0 10 100 FOR TEST CIRCUIT SEE FIGURE 13 0 A 1 0 1000 20 Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 60 80 100 120 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) I D , Drain Current (A) ISD , Reverse Drain Current (A) 40 QG , Total Gate Charge (nC) V D S , D ra in-to -Source V olta ge (V) TJ = 150 ° C 100 10 TJ = 25 ° C 1 0.4 V GS = 0 V 0.6 0.8 1.0 1.2 1.4 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 400V VDS = 250V VDS = 100V 1.6 10us 100us 10 1ms 1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFBA22N50A 25 RD VDS VGS 20 D.U.T. RG + I D , Drain Current (A) -VDD 10V 15 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10 Fig 10a. Switching Time Test Circuit VDS 5 90% 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFBA22N50A + V - DD IA S 20V 0 .0 1 Ω tp EAS , Single Pulse Avalanche Energy (mJ) D .U .T RG ID 10.7A 15A BOTTOM 24A TOP 2000 D R IV E R L VDS 2500 1 5V 1500 A 1000 Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp 500 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 640 QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. V D S a v , A valanc he V oltage (V) QGS 630 620 610 600 + V - DS 590 VGS 4 8 12 16 20 24 I a v , A v alanc he C urre nt (A ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 A 0 Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com IRFBA22N50A Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFET www.irf.com 7 IRFBA22N50A Super-220™ ( TO-273AA ) Package Outline 11.00 [.433] 10.00 [.394] 5.00 [.196] 4.00 [.158] 9.00 [. 8.00 [. B 0.25 [ 4 15.00 [.590] 14.00 [.552] 1 2 13.50 [. 12.50 [. 3 14.50 [.570] 13.00 [.512] 3X 4X 1.30 [.051] 0.90 [.036] 0.25 [.010] B A 1.00 [.039] 0.70 [.028] 3.00 [.118] 2.50 [.099] MOSFET IGBT Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 3.4mH RG = 25Ω, I AS = 24A. (See Figure 12) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 23A, di/dt ≤ 123A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/00 8 www.irf.com