PD - 9.1497A IRLI540N PRELIMINARY HEXFET® Power MOSFET Logic-Level Gate Drive Advanced Process Technology l Isolated Package l High Voltage Isolation = 2.5KVRMS l Sink to Lead Creepage Dist. = 4.8mm l Fully Avalanche Rated Description l D l VDSS = 100V RDS(on) = 0.044Ω G ID = 23A S Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing. TO-220 FULLPAK Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw 23 16 120 54 0.36 ± 16 310 18 5.4 5.0 -55 to + 175 Units A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA Junction-to-Case Junction-to-Ambient Typ. Max. Units ––– ––– 2.8 65 °C/W 3/16/98 IRLI540N Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time LD Internal Drain Inductance LS Internal Source Inductance Ciss Coss Crss C Input Capacitance Output Capacitance Reverse Transfer Capacitance Drain to Sink Capacitance IGSS Min. 100 ––– ––– ––– ––– 1.0 14 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.11 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 11 81 39 62 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.044 VGS = 10V, ID = 12A 0.053 Ω VGS = 5.0V, ID = 12A 0.063 VGS = 4.0V, ID = 10A 2.0 V VDS = VGS , ID = 250µA ––– S VDS = 25V, ID = 18A 25 VDS = 100V, VGS = 0V µA 250 VDS = 80V, VGS = 0V, TJ = 150°C 100 VGS = 16V nA -100 VGS = -16V 74 ID = 18A 9.4 nC VDS = 80V 38 VGS = 5.0V, See Fig. 6 and 13 ––– VDD = 50V ––– ID = 18A ns ––– RG = 5.0Ω, VGS = 5.0V ––– RD = 2.7Ω, See Fig. 10 Between lead, ––– 4.5 ––– 6mm (0.25in.) nH G from package ––– 7.5 ––– and center of die contact ––– 1800 ––– VGS = 0V ––– 350 ––– VDS = 25V pF ––– 170 ––– ƒ = 1.0MHz, See Fig. 5 ––– 12 ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Q rr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 1.9mH RG = 25Ω, IAS = 18A. (See Figure 12) ISD ≤ 18A, di/dt ≤ 180A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Min. Typ. Max. Units Conditions D MOSFET symbol 23 ––– ––– showing the A G integral reverse ––– ––– 120 p-n junction diode. S ––– ––– 1.3 V TJ = 25°C, IS = 18A, VGS = 0V ––– 190 290 ns TJ = 25°C, IF = 18A ––– 1.1 1.7 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Pulse width ≤ 300µs; duty cycle ≤ 2%. t=60s, ƒ=60Hz Uses IRL540N data and test conditions D S IRLI540N 1000 1000 VGS 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V VGS 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V TOP ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) TOP 100 10 2.5V 20µs PULSE WIDTH T J = 25°C 1 0.1 1 10 A 100 10 2.5V 20µs PULSE WIDTH T J = 175°C 1 100 0.1 1 V D S , Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics 3.0 R D S ( o n ) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 1000 TJ = 25°C TJ = 175°C 10 V D S = 50V 20µs PULSE WIDTH 1 2 4 6 8 V G S , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics A 100 V D S , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 10 10 A I D = 30A 2.5 2.0 1.5 1.0 0.5 V G S = 10V 0.0 -60 -40 -20 0 20 40 60 80 A 100 120 140 160 180 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature IRLI540N 15 3000 V G S , Gate-to-Source Voltage (V) V G S = 0V, f = 1MHz C iss = C gs+ C gd , C SHORTED ds C rss = C gd C oss = C ds+ C gd C, Capacitance (pF) 2000 C oss C rss 0 10 9 6 3 FOR TEST CIRCUIT SEE FIGURE 13 0 A 1 V D S = 80V V D S = 50V V D S = 20V 12 C iss 1000 I D = 18A 0 100 40 60 80 A 100 Q G , Total Gate Charge (nC) V D S , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 1000 OPERATION IN THIS AREA LIMITED BY RD S ( o n ) I D , Drain Current (A) I S D , Reverse Drain Current (A) 20 100 TJ = 175°C T J = 25°C 10 100 10µs 100µs 10 1ms VG S = 0V 1 0.4 0.6 0.8 1.0 1.2 1.4 1.6 V S D , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage A 1.8 T C = 25°C T J = 175°C Single Pulse 1 1 10ms 10 100 V D S , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area A 1000 IRLI540N 25 RD VDS VGS I D , Drain Current (A) 20 D.U.T. RG + -VDD 15 5.0V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10 Fig 10a. Switching Time Test Circuit 5 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 P DM 0.02 0.01 t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 L VD S D .U .T RG IA S 10V tp D R IV E R + - VD D A 0.0 1 Ω Fig 12a. Unclamped Inductive Test Circuit 800 TOP BOTTOM ID 7.3A 13A 18A 600 400 200 E AS , 1 5V Single Pulse Avalanche Energy (mJ) IRLI540N A 0 25 V (B R )D SS tp 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ 12V .2µF QG .3µF 5.0 V QGS D.U.T. QGD + V - DS VGS VG 3mA IG Charge Fig 13a. Basic Gate Charge Waveform ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 175 IRLI540N Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive D= Period P.W. + - VDD P.W. Period VGS=10V D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS ISD * IRLI540N Package Outline TO-220 Fullpak Outline Dimensions are shown in millimeters (inches) 1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) 4 .8 0 ( .1 89 ) 4 .6 0 ( .1 81 ) -A 3 .7 0 (.14 5 ) 3 .2 0 (.12 6 ) 1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 ) 2 .80 (.1 10 ) 2 .60 (.1 02 ) L E A D A S S IG N M E N T S 1 - G A TE 2 - D R A IN 3 - S O U RC E 7 .1 0 (.2 8 0 ) 6 .7 0 (.2 6 3 ) 1 .1 5 (.0 4 5) M IN. NO T E S : 1 D IME N S IO N ING & T O L E R A N C ING P E R A N S I Y 1 4 .5 M , 1 9 8 2 1 2 3 2 C O N TR O L L ING D IM E N S IO N: IN C H . 3.3 0 (.13 0 ) 3.1 0 (.12 2 ) -B - 1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C A 1 .4 0 (.0 5 5) 3X 1 .0 5 (.0 4 2) 0 .9 0 (.0 3 5 ) 3X 0 .7 0 (.0 2 8 ) 0 .2 5 (.0 1 0) 3X M A M B 2 .54 (.1 0 0) 2X 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 ) 2 .85 (.1 1 2 ) 2 .65 (.1 0 4 ) D B M IN IM U M C R E E P A G E D IS T A NC E B E T W E E N A -B -C -D = 4.8 0 (.1 89 ) Part Marking Information TO-220 Fullpak E X A M P LE : TH IS IS A N IR FI840 G W ITH AS S E M B LY LO T CO DE E 401 A IN TE R N AT IO NA L RE C TIF IE R LOGO P AR T NU M B ER IR F I8 40G E 4 01 9 24 5 A S S EM BL Y LO T CO DE DA T E CO D E (Y YW W ) YY = YE A R W W = W EEK WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371 Data and specifications subject to change without notice. 3/98