IRF IRL530

PD - 91348C
IRL530N
l
l
l
l
l
l
Logic-Level Gate Drive
Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
HEXFET® Power MOSFET
D
VDSS = 100V
RDS(on) = 0.10Ω
G
ID = 17A
S
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
TO-220AB
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @T C = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
17
12
60
79
0.53
± 16
150
9.0
7.9
5.0
-55 to + 175
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
1.9
–––
62
°C/W
1/09/04
IRL530N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
LD
Internal Drain Inductance
LS
Internal Source Inductance
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
IGSS
Min.
100
–––
–––
–––
–––
1.0
7.7
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
Conditions
––– –––
V
V GS = 0V, ID = 250µA
0.122 ––– V/°C Reference to 25°C, ID = 1mA
––– 0.100
VGS = 10V, ID = 9.0A „
––– 0.120
Ω
VGS = 5.0V, ID = 9.0A „
––– 0.150
VGS = 4.0V, ID = 8.0A „
––– 2.0
V
VDS = VGS, ID = 250µA
––– –––
S
V DS = 25V, ID = 9.0A
––– 25
VDS = 100V, VGS = 0V
µA
––– 250
VDS = 80V, VGS = 0V, TJ = 150°C
––– 100
VGS = 16V
nA
––– -100
VGS = -16V
––– 34
ID = 9.0A
––– 4.8
nC
VDS = 80V
––– 20
VGS = 5.0V, See Fig. 6 and 13 „
7.2 –––
VDD = 50V
53 –––
ID = 9.0A
ns
30 –––
RG = 6.0Ω, VGS = 5.0V
26 –––
RD = 5.5Ω, See Fig. 10 „
Between lead,
–––
4.5
–––
nH
6mm (0.25in.)
G
from package
––– 7.5 –––
and center of die contact
––– 800 –––
VGS = 0V
––– 160 –––
pF
VDS = 25V
–––
90 –––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) †
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
17
––– –––
showing the
A
G
integral reverse
––– –––
60
p-n junction diode.
S
––– ––– 1.3
V
TJ = 25°C, IS = 9.0A, VGS = 0V „
––– 140 210
ns
TJ = 25°C, I F = 9.0A
––– 740 1100 nC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 3.7mH
RG = 25Ω, IAS = 9.0A. (See Figure 12)
.
ƒ ISD ≤ 9.0A, di/dt ≤ 540A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%
D
S
IRL530N
100
100
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
10
1
2 .5V
2 0µ s P U LS E W ID TH
T J = 2 5°C
0.1
0.1
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
TOP
ID , Drain-to-Source Current (A )
ID , Drain-to-Source Current (A )
TOP
1
10
10
2.5 V
1
2 0µ s P U LS E W ID TH
T J = 1 75 °C
0.1
A
100
0.1
V D S , D rain-to-S ource V oltage (V )
3.0
R D S (on) , D ra in-to -S o urc e O n R e s is ta nc e
(N o rm alize d)
I D , D ra in -to-S ourc e C urrent (A)
T J = 2 5 °C
T J = 1 7 5°C
10
1
V DS = 5 0V
2 0µ s P U L S E W ID TH
3
4
5
6
7
8
9
V G S , G ate-to -So urce Voltag e (V)
Fig 3. Typical Transfer Characteristics
A
100
Fig 2. Typical Output Characteristics
100
2
10
V D S , D rain-to-S ource V oltage (V )
Fig 1. Typical Output Characteristics
0.1
1
10
A
I D = 15 A
2.5
2.0
1.5
1.0
0.5
V G S = 1 0V
0.0
-60
-40 -20
0
20
40
60
80
A
100 120 140 160 180
T J , J unc tion T em perature (°C )
Fig 4. Normalized On-Resistance
Vs. Temperature
IRL530N
V GS
C iss
C rs s
C o ss
C , Capacitance (pF)
1200
=
=
=
=
15
0V ,
f = 1MHz
C g s + C g d , C d s S H O R TE D
C gd
C ds + C g d
V G S , G ate-to-S ource V oltage (V )
1400
800
600
C oss
400
C rss
200
0
10
9
6
3
FO R TE S T C IR C U IT
S E E FIG U R E 1 3
0
A
1
V D S = 8 0V
V D S = 5 0V
V D S = 2 0V
12
C iss
1000
I D = 9.0 A
100
0
V D S , D rain-to-S ourc e V oltage (V )
20
30
40
A
50
Q G , T otal G ate C harge (nC )
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
100
O P E R A TIO N IN TH IS A R E A LIM ITE D
B Y R D S (o n )
I D , Drain C urrent (A )
I S D , R everse Drain C urrent (A )
10
T J = 17 5°C
10
T J = 2 5°C
V G S = 0V
1
0.4
0.6
0.8
1.0
1.2
V S D , S ourc e-to-D rain V oltage (V )
Fig 7. Typical Source-Drain Diode
Forward Voltage
A
1.4
100
10µ s
10
10 0µs
1m s
T C = 25 °C
T J = 17 5°C
S ing le P u lse
1
1
10m s
10
100
V D S , D rain-to-S ource V oltage (V )
Fig 8. Maximum Safe Operating Area
A
1000
IRL530N
20
RD
VDS
VGS
I D , Drain Current (A)
15
D.U.T.
RG
+
-VDD
5.0V
10
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
5
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
P DM
0.05
0.1
0.01
0.00001
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRL530N
D.U.T.
RG
+
V
- DD
IAS
5.0 V
tp
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
E A S , S ingle P ulse A valanche E nergy (m J)
350
L
VDS
TO P
300
B O TTO M
250
200
150
100
50
V D D = 25 V
0
25
50
A
75
100
125
150
S tarting T J , J unc tion T em perature (°C )
tp
VDD
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
VDS
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
5.0 V
QGS
ID
3 .7A
6 .4A
9.0 A
D.U.T.
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
175
IRL530N
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
-
VDD
P.W.
Period
VGS=10V
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
*
IRL530N
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
3
14.09 (.555)
13.47 (.530)
HEXFET
1 - GATE
IGBTs, CoPACK
2 - DRAIN
1- GATE
3 - SOURCE
2- DRAIN
3- SOURCE
4 - DRAIN
4- DRAIN
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
0.55 (.022)
0.46 (.018)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
For GB Production
EXAMPLE:
THIS IS ANIRF1010
LOT CODE 1789
ASSEMBLEDONWW19, 1997
INTHE ASSEMBLYLINE "C"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK19
LINE C
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/04