PD - 94611A SMPS MOSFET IRFP26N60L HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. Trr typ. ID • Telecom and Server Power Supplies • Uninterruptible Power Supplies 600V 170ns 26A 210mΩ • Motor Control applications Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. TO-247AC • Higher Gate voltage threshold offers improved noise immunity . Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM 100 PD @TC = 25°C Power Dissipation 470 W 3.8 ±30 W/°C V 30 -55 to + 150 V/ns 26 17 c VGS Linear Derating Factor Gate-to-Source Voltage d dv/dt TJ Peak Diode Recovery dv/dt TSTG Storage Temperature Range Operating Junction and A °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 1.1(10) N•m (lbf•in) Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 26 ISM (Body Diode) Pulsed Source Current ––– ––– 100 showing the integral reverse p-n junction diode. TJ = 25°C, IS = 26A, VGS = 0V c MOSFET symbol A (Body Diode) D G VSD Diode Forward Voltage ––– ––– 1.5 V trr Reverse Recovery Time ––– 170 250 ––– 210 320 ns TJ = 25°C, IF = 26A TJ = 125°C, di/dt = 100A/µs ––– 670 1000 Qrr Reverse Recovery Charge nC ––– 1050 1570 IRRM Reverse Recovery Current ton Forward Turn-On Time www.irf.com ––– 7.3 11 f S f T = 25°C, I = 26A, V = 0V f T = 125°C, di/dt = 100A/µs f J S GS J A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 10/19/04 IRFP26N60L Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions V(BR)DSS ∆V(BR)DSS/∆TJ Drain-to-Source Breakdown Voltage 600 ––– ––– Breakdown Voltage Temp. Coefficient ––– 0.33 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 210 250 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 mΩ VGS = 10V, ID = 16A V VDS = VGS, ID = 250µA IDSS Drain-to-Source Leakage Current ––– ––– 50 µA ––– ––– 2.0 mA VDS = 480V, VGS = 0V, TJ = 125°C ––– ––– 100 nA VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.8 ––– Ω f = 1MHz, open drain IGSS RG Gate-to-Source Forward Leakage V VGS = 0V, ID = 250µA f VDS = 600V, VGS = 0V VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Qg Forward Transconductance 13 Total Gate Charge Qgs Gate-to-Source Charge Qgd S Conditions ––– ––– VDS = 50V, ID = 16A ––– ––– 180 ––– ––– 61 Gate-to-Drain ("Miller") Charge ––– ––– 85 VGS = 10V, See Fig. 7 & 15 td(on) Turn-On Delay Time ––– 31 ––– VDD = 300V tr Rise Time ––– 110 ––– td(off) Turn-Off Delay Time ––– 47 ––– RG = 4.3Ω tf Fall Time ––– 42 ––– VGS = 10V, See Fig. 11a & 11b Ciss Input Capacitance ––– 5020 ––– VGS = 0V Coss Output Capacitance ––– 450 ––– Crss Reverse Transfer Capacitance ––– 34 ––– Coss eff. Effective Output Capacitance ––– 230 ––– Coss eff. (ER) Effective Output Capacitance ––– 170 ––– ID = 26A nC ns VDS = 480V f ID = 26A f VDS = 25V pF ƒ = 1.0MHz, See Fig. 5 VGS = 0V,VDS = 0V to 480V g (Energy Related) Avalanche Characteristics Symbol EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c d c Typ. ––– Max. 570 ––– 26 A ––– 47 mJ Typ. Max. Units ––– 0.27 0.24 ––– ––– 40 Units mJ Thermal Resistance Symbol Parameter h RθJC Junction-to-Case RθCS Case-to-Sink, Flat, Greased Surface Junction-to-Ambient RθJA h Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 12) Starting TJ = 25°C, L = 1.7mH, RG = 25Ω, IAS = 26A, (See Figure 14a) ISD ≤ 26A, di/dt ≤ 719A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 °C/W Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C www.irf.com IRFP26N60L 100 1000 100 10 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 1 5.5V 0.1 10 BOTTOM VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.5V 1 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.1 0.01 0.1 1 10 0.1 100 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 3.0 T J = 150°C 10.00 TJ = 25°C 1.00 VDS = 50V 20µs PULSE WIDTH ID = 26A VGS = 10V 2.5 (Normalized) 100.00 RDS(on) , Drain-to-Source On Resistance 1000.00 ID, Drain-to-Source Current (Α) 1 2.0 1.5 1.0 0.5 0.10 2.0 4.0 6.0 8.0 10.0 12.0 14.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 16.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP26N60L 100000 25 Coss = Cds + Cgd 10000 Ciss 20 Energy (µJ) C, Capacitance(pF) 30 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd 1000 Coss 15 10 100 5 Crss 0 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typ. Output Capacitance Stored Energy vs. VDS 12.0 1000.00 10.0 VDS= 480V VDS= 300V ISD, Reverse Drain Current (A) ID= 26A VGS , Gate-to-Source Voltage (V) 100 100.00 VDS= 120V 8.0 6.0 4.0 2.0 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0.0 0.10 0 25 50 75 100 125 Q G Total Gate Charge (nC) Fig 7. Typical Gate Charge Vs. Gate-to-Source Voltage 4 150 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFP26N60L 30 ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 25 ID, Drain Current (A) 100 100µsec 10 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 20 15 10 5 10msec 0 0.1 1 10 100 1000 10000 25 Fig 9. Maximum Safe Operating Area VDS VGS RG RD 75 100 125 150 Fig 10. Maximum Drain Current vs. Case Temperature VDS 90% D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 11a. Switching Time Test Circuit www.irf.com 50 T C , Case Temperature (°C) VDS, Drain-to-Source Voltage (V) 10% VGS td(on) tr t d(off) tf Fig 11b. Switching Time Waveforms 5 IRFP26N60L Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 P DM t1 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 t2 Notes: 1. Duty factor D = 2. Peak T t1/ t 2 J = P DM x Z thJC +T C 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case VGS(th) Gate threshold Voltage (V) 6.0 5.0 4.0 ID = 250µA 3.0 2.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13. Threshold Voltage vs. Temperature 6 www.irf.com 1 IRFP26N60L EAS , Single Pulse Avalanche Energy (mJ) 1050 ID 12A 16A BOTTOM 26A TOP 900 750 600 450 300 150 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14a. Maximum Avalanche Energy vs. Drain Current 15V V(BR)DSS DRIVER L VDS D.U.T RG + - VDD IAS 20V tp tp A 0.01Ω I AS Fig 14b. Unclamped Inductive Test Circuit Fig 14c. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS V .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 15a. Gate Charge Test Circuit www.irf.com Charge Fig 15b. Basic Gate Charge Waveform 7 IRFP26N60L Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs 8 www.irf.com IRFP26N60L TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE ASS EMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPE30 56 ASS EMBLY LOT CODE 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04 www.irf.com 9