PD- 95141 IRFPS40N50LPbF SMPS MOSFET ® HEXFET Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. Trr typ. ID • Telecom and Server Power Supplies 500V 170ns 46A 0.087Ω • Uninterruptible Power Supplies • Motor Control applications • Lead-Free Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. • Higher Gate voltage threshold offers improved noise Super-247™ immunity. Absolute Maximum Ratings Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V Max. ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 29 IDM 180 Pulsed Drain Current PD @TC = 25°C Power Dissipation c VGS Linear Derating Factor Gate-to-Source Voltage dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range Units 46 d A 540 W 4.3 ±30 W/°C V 34 -55 to + 150 V/ns °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 46 ISM (Body Diode) Pulsed Source Current ––– ––– 180 ––– ––– 1.5 V ns c A (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time www.irf.com Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 46A, VGS = 0V TJ = 25°C, IF = 46A ––– 170 250 ––– 220 330 ––– 705 1060 ––– 1.3 2.0 nC TJ = 25°C, IS = 46A, VGS = 0V TJ = 125°C, di/dt = 100A/µs ––– 9.0 ––– A TJ = 125°C, di/dt = 100A/µs f f f f TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 09/14/04 IRFPS40N50LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage 500 ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage 3.0 IDSS Drain-to-Source Leakage Current IGSS RG Min. Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = 250µA ––– 0.60 ––– V/°C Reference to 25°C, ID = 1mA ––– 0.087 0.100 ––– 5.0 Ω V VGS = 10V, ID = 28A f VDS = VGS, ID = 250µA ––– ––– 50 µA VDS = 500V, VGS = 0V ––– ––– 2.0 mA VDS = 400V, VGS = 0V, TJ = 125°C nA Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.90 ––– VGS = 30V VGS = -30V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter gfs Qg Forward Transconductance Min. Typ. Max. Units Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge ––– ––– 190 td(on) Turn-On Delay Time ––– 27 ––– tr Rise Time ––– 170 ––– td(off) Turn-Off Delay Time ––– 50 ––– tf Fall Time ––– 69 ––– Ciss Input Capacitance ––– 8110 ––– Coss Output Capacitance ––– 960 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 130 ––– Coss Output Capacitance ––– 11200 ––– ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 240 ––– Coss eff. Effective Output Capacitance ––– 440 ––– Coss eff. (ER) Effective Output Capacitance ––– 310 ––– 21 ––– ––– ––– ––– 380 ––– ––– 80 Conditions S VDS = 50V, ID = 46A nC VDS = 400V ID = 46A VGS = 10V, See Fig. 7 & 15 f VDD = 250V ns ID = 46A RG = 0.85Ω VGS = 10V, See Fig. 14a & 14b f VGS = 0V pF VGS = 0V, VDS = 400V, ƒ = 1.0MHz VGS = 0V,VDS = 0V to 400V g (Energy Related) Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current c Repetitive Avalanche Energy d c Typ. ––– Max. 920 Units mJ ––– 46 A ––– 54 mJ Typ. Max. Units ––– 0.23 0.24 ––– ––– 40 Thermal Resistance Symbol RθJC RθCS RθJA Parameter Junction-to-Case h Case-to-Sink, Flat, Greased Surface Junction-to-Ambient h Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11). Starting TJ = 25°C, L = 0.86mH, RG = 25Ω, IAS = 46A. (See Figure 12). ISD ≤ 46A, di/dt ≤ 550A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 °C/W Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS. Rθ is measured at TJ approximately 90°C www.irf.com IRFPS40N50LPbF 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 100 10 1 4.5V 0.1 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 10 100 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 10 TJ = 25 ° C 1 V DS= 50V 20µs PULSE WIDTH 6 7 8 9 10 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics TJ = 150° C 5 1 VDS , Drain-to-Source Voltage (V) 1000 4 20µs PULSE WIDTH TJ = 150 °C 0.1 0.1 Fig 1. Typical Output Characteristics 0.1 4.5V 1 VDS , Drain-to-Source Voltage (V) 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) 1000 11 3.0 ID = 47A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRFPS40N50LPbF 1000000 100000 35 Coss = Cds + Cgd 10000 30 Energy (µJ) C, Capacitance(pF) 40 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Ciss 1000 Coss 100 25 20 15 10 Crss 5 10 1 10 100 0 1000 0 VDS, Drain-to-Source Voltage (V) V DS= 400V V DS= 250V V DS= 100V 15 ISD , Reverse Drain Current (A) VGS , Gate-to-Source Voltage (V) 400 500 600 1000 100 10 5 0 100 200 300 QG , Total Gate Charge (nC) Fig 7. Typical Gate Charge vs. Gate-to-Source Voltage 4 300 Fig 6. Typ. Output Capacitance Stored Energy vs. VDS ID = 47A 0 200 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 20 100 400 TJ = 150° C 10 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.7 1.2 1.7 2.2 VSD ,Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFPS40N50LPbF 50 VGS 40 ID , Drain Current (A) RD V DS RG 30 D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 20 Fig 10a. Switching Time Test Circuit 10 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response(Z thJC ) 1 0.1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.01 0.001 0.00001 PDM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFPS40N50LPbF 1000 ID , Drain Current (A) EAS , Single Pulse Avalanche Energy (mJ) 2000 OPERATION IN THIS AREA LIMITED BY RDS(on) TOP BOTTOM ID 21A 30A 46A 1500 100 10us 100us 10 1 1000 1ms TC = 25 °C TJ = 150 °C Single Pulse 10ms 10 100 1000 VDS , Drain-to-Source Voltage (V) 500 0 25 50 75 100 125 150 Starting TJ , Junction Temperature( ° C) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. Maximum Safe Operating Area 15V V(BR)DSS DRIVER L VDS D.U.T RG + V - DD IAS 20V 0.01Ω tp tp A I AS Fig 14a. Unclamped Inductive Test Circuit Fig 14b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 15a. Gate Charge Test Circuit 6 Charge Fig 15b. Basic Gate Charge Waveform www.irf.com IRFPS40N50LPbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - V DD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFPS40N50LPbF Case Outline and Dimensions — Super-247 Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 8 www.irf.com