PD- 94227A IRFPS35N50L SMPS MOSFET HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. • Telecom and Server Power Supplies 0.125Ω 500V • Uninterruptible Power Supplies • Motor Control applications Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. • Higher Gate voltage threshold offers improved noise immunity . Trr typ. ID 170ns 34A Super-247™ Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 22 IDM 140 Pulsed Drain Current PD @TC = 25°C Power Dissipation c VGS Linear Derating Factor Gate-to-Source Voltage dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range Units 34 e A 450 W 3.6 ±30 W/°C V 15 -55 to + 150 V/ns °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 1.1(10) N•m (lbf•in) Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 34 ISM (Body Diode) Pulsed Source Current ––– ––– 140 c Conditions MOSFET symbol A (Body Diode) showing the integral reverse VSD Diode Forward Voltage ––– ––– 1.5 V p-n junction diode. TJ = 25°C, IS = 34A, VGS = 0V trr Reverse Recovery Time ––– 170 250 ns TJ = 25°C, IF = 34A ––– 220 330 Qrr Reverse Recovery Charge ––– 670 1010 ––– 1500 2200 IRRM Reverse Recovery Current ton Forward Turn-On Time ––– 8.5 ––– TJ = 125°C, di/dt = 100A/µs f f f f nC TJ = 25°C, IS = 34A, VGS = 0V TJ = 125°C, di/dt = 100A/µs A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 8/26/04 IRFPS35N50L Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 500 ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– RDS(on) Static Drain-to-Source On-Resistance ––– VGS(th) Gate Threshold Voltage 3.0 IDSS Drain-to-Source Leakage Current IGSS RG ––– ––– 0.12 ––– 0.125 0.145 ––– 5.0 V Conditions VGS = 0V, I D = 250µA V/°C Reference to 25°C, ID = 1mA Ω V VGS = 10V, ID = 20A f VDS = VGS, ID = 250µA ––– ––– 50 µA VDS = 500V, V GS = 0V ––– ––– 2.0 mA VDS = 400V, V GS = 0V, TJ = 125°C nA Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 1.1 ––– VGS = 30V VGS = -30V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Qg Forward Transconductance 18 Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge td(on) S Conditions ––– ––– VDS = 50V, I D = 20A ––– ––– 230 ––– ––– 65 ––– ––– 110 VGS = 10V, See Fig. 7 & 15 Turn-On Delay Time ––– 24 ––– VDD = 250V tr Rise Time ––– 100 ––– td(off) Turn-Off Delay Time ––– 42 ––– tf Fall Time ––– 42 ––– VGS = 10V, See Fig. 10a & 10b Ciss Input Capacitance ––– 5580 ––– VGS = 0V Coss Output Capacitance ––– 590 ––– Crss Reverse Transfer Capacitance ––– 58 ––– Coss Output Capacitance ––– 7290 ––– Coss Output Capacitance ––– 160 ––– VGS = 0V, V DS = 400V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 320 ––– VGS = 0V,VDS = 0V to 400V Coss eff. (ER) Effective Output Capacitance ––– 220 ––– ID = 34A nC ns VDS = 400V f ID = 34A RG = 1.2Ω f VDS = 25V pF ƒ = 1.0MHz, See Fig. 5 VGS = 0V, V DS = 1.0V, ƒ = 1.0MHz g (Energy Related) Avalanche Characteristics Symbol EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c d c Typ. ––– Max. 560 Units mJ ––– 34 A ––– 45 mJ Typ. Max. Units ––– 0.28 0.24 ––– ––– 40 Thermal Resistance Symbol Parameter h RθJC Junction-to-Case RθCS Case-to-Sink, Flat, Greased Surface Junction-to-Ambient RθJA h Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 0.97mH, RG =25Ω, IAS = 34A (See Figure 13) ISD ≤ 34A, di/dt ≤ 765A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 °C/W Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS. Rθ is measured at TJ approximately 90°C www.irf.com IRFPS35N50L 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP ID, Drain-to-Source Current (A) 100 10 I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 0.01 100 10 4.5V 1 20µs PULSE WIDTH Tj = 25°C 0.001 0.1 1 10 0.1 0.1 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 1000 100 TJ = 150 ° C 10 1 TJ = 25 ° C V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 0.01 4.0 1 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 0.1 20µs PULSE WIDTH TJ = 150 ° C 10.0 ID = 34A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFPS35N50L 30 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 Ciss 20 Energy (µJ) C, Capacitance(pF) 25 Coss = Cds + Cgd 1000 Coss 15 10 100 Crss 5 10 0 1 10 100 1000 0 VDS, Drain-to-Source Voltage (V) ISD , Reverse Drain Current (A) VGS , Gate-to-Source Voltage (V) 16 500 600 100 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 80 120 160 200 QG , Total Gate Charge (nC) Fig 7. Typical Gate Charge Vs. Gate-to-Source Voltage 4 400 1000 VDS = 400V VDS = 250V VDS = 100V 40 300 Fig 6. Typ. Output Capacitance Stored Energy vs. VDS ID = 34A 0 200 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 20 100 240 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD ,Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFPS35N50L 35 V DS VGS ID , Drain Current (A) 30 RD D.U.T. RG + -VDD 25 VGS 20 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 15 Fig 10a. Switching Time Test Circuit 10 VDS 5 90% 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFPS35N50L ID , Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 10us 100us 10 1ms 1 1 10ms 10 100 1000 TOP 1000 100 TC = 25 ° C TJ = 150 ° C Single Pulse EAS , Single Pulse Avalanche Energy (mJ) 1200 1000 10000 VDS , Drain-to-Source Voltage (V) BOTTOM ID 15A 22A 34A 800 600 400 200 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 12. Maximum Safe Operating Area Fig 13. Maximum Avalanche Energy Vs. Drain Current 15V V(BR)DSS DRIVER L VDS D.U.T RG + - VDD IAS 20V 0.01Ω tp tp A I AS Fig 14a. Unclamped Inductive Test Circuit Fig 14b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. + V - DS QGS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 15a. Gate Charge Test Circuit 6 Charge Fig 15b. Basic Gate Charge Waveform www.irf.com IRFPS35N50L Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFPS35N50L Super-247™ (TO-274AA) Package Outline 0.13 [.005] 16.10 [.632] 15.10 [.595] 2X R 3.00 [.118] 2.00 [.079] 0.25 [.010] 5.50 [.216] 4.50 [.178] A B A 13.90 [.547] 13.30 [.524] 2.15 [.084] 1.45 [.058] 1.30 [.051] 0.70 [.028] 4 20.80 [.818] 19.80 [.780] 16.10 [.633] 15.50 [.611] 4 C 1 2 3 B 14.80 [.582] 13.80 [.544] 5.45 [.215] 2X Ø 1.60 [.063] MAX. 4.25 [.167] 3.85 [.152] 3X 1.60 [.062] 1.45 [.058] 0.25 [.010] B A 3X 1.30 [.051] 1.10 [.044] E E 2.35 [.092] 1.65 [.065] S ECTION E-E NOTES: 1. DIMENS IONING AND TOLERANCING PER ASME Y14.5M-1994. 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES] 3. CONTROLLING DIMENS ION: MILLIMETER 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-274AA LEAD ASS IGNMENTS MOS FET 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN IGBT 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR Super-247™ (TO-274AA)Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPS37N50A A8B9 0020 ASSEMBLY LOT CODE TOP DATE CODE (YYWW) YY = YEAR WW = WEEK Super TO-247™ package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04 8 www.irf.com