PD - 95750 IRFIB7N50LPbF SMPS MOSFET Applications • Zero Voltage Switching SMPS • Telecom and Server Power Supplies • Uninterruptible Power Supplies • Motor Control applications • Lead-Free HEXFET® Power MOSFET VDSS RDS(on) typ. Trr typ. ID 500V 85ns 320mΩ Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. • Higher Gate voltage threshold offers improved noise immunity. 6.8A TO-220 Full-Pak Absolute Maximum Ratings Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V Max. 6.8 Units ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 4.3 A IDM 27 Pulsed Drain Current PD @TC = 25°C Power Dissipation c VGS Linear Derating Factor Gate-to-Source Voltage dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range e 46 W 0.37 ±30 W/°C V 24 -55 to + 150 V/ns °C Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw 300 (1.6mm from case ) 10lb in (1.1N m) x Diode Characteristics Symbol Parameter x Min. Typ. Max. Units IS Continuous Source Current ––– ––– 6.8 ISM (Body Diode) Pulsed Source Current ––– ––– 27 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.5 V trr Reverse Recovery Time ––– 85 130 ns ––– 130 200 c Conditions MOSFET symbol A showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 6.8A, VGS = 0V TJ = 25°C, IF = 6.8A TJ = 125°C, di/dt = 100A/µs f Qrr Reverse Recovery Charge ––– 280 420 ––– 570 860 nC TJ = 25°C, IS = 6.8A, VGS = 0V TJ = 125°C, di/dt = 100A/µs IRRM Reverse Recovery Current ––– 5.9 8.9 A ton Forward Turn-On Time www.irf.com f f S f TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 8/23/04 IRFIB7N50LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG 500 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 0.44 0.32 ––– ––– ––– ––– ––– 0.88 ––– ––– 0.38 5.0 50 2.0 100 -100 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 4.1A Ω V VDS = VGS, ID = 250µA µA VDS = 500V, VGS = 0V mA VDS = 400V, VGS = 0V, TJ = 125°C nA VGS = 30V VGS = -30V f = 1MHz, open drain Ω f Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Coss eff. (ER) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Effective Output Capacitance 4.7 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 23 36 47 19 2220 230 23 2780 63 140 100 ––– 92 24 44 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns Conditions VDS = 50V, ID = 4.1A ID = 6.8A VDS = 400V VGS = 10V, See Fig. 7 & 16 VDD = 250V ID = 6.8A RG = 9.0Ω VGS = 10V, See Fig. 11a & 11b VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 400V, ƒ = 1.0MHz f f pF VGS = 0V,VDS = 0V to 400V g (Energy Related) Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d c Typ. ––– ––– ––– Max. 550 6.8 4.6 Units mJ A mJ Typ. Max. Units ––– ––– 2.69 65 °C/W Thermal Resistance Symbol RθJC RθJA Parameter Junction-to-Case Junction-to-Ambient Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 12). Starting TJ = 25°C, L = 24mH, RG = 25Ω, IAS = 6.8A, (See Figure 14). ISD ≤ 6.8, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, dv/dt = 24V/ns, TJ ≤ 150°C. 2 Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff.(ER) is a fixed capacitance that stores the same energy as C oss while VDS is rising from 0 to 80% VDSS. www.irf.com IRFIB7N50LPbF 100 100 10 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 1 5.0V 0.1 10 BOTTOM VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 5.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.01 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 TJ = 175°C 10 T J = 25°C 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 2.5 ID = 6.8A VGS = 10V 2.0 1.5 1.0 0.5 0.0 3 4 5 6 7 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRFIB7N50LPbF 100000 10 C oss = C ds + C gd 10000 8 Energy (µJ) C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 1000 Coss 6 4 100 2 Crss 0 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) 50 100 150 200 250 300 350 400 450 500 550 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typ. Output Capacitance Stored Energy vs. VDS 12.0 100.00 VDS= 400V 10.0 ISD, Reverse Drain Current (A) VGS, Gate-to-Source Voltage (V) ID= 6.8A 8.0 6.0 4.0 2.0 10.00 T J = 150°C 1.00 T J = 25°C 0.10 VGS = 0V 0.0 0.01 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 7. Typical Gate Charge vs. Gate-to-Source Voltage 4 70 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFIB7N50LPbF 7 OPERATION IN THIS AREA LIMITED BY R (on) DS 6 10 100µsec ID, Drain Current (A) ID, Drain-to-Source Current (A) 100 1 DC 0.1 5 4 3 2 1msec Tc = 25°C Tj = 150°C Single Pulse 1 10msec 0 0.01 1 10 100 1000 10000 25 VDS, Drain-to-Source Voltage (V) VGS RG 100 125 150 Fig 10. Maximum Drain Current vs. Case Temperature RD VDS 90% D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 11a. Switching Time Test Circuit www.irf.com 75 T C , Case Temperature (°C) Fig 9. Maximum Safe Operating Area V DS 50 10% VGS td(on) tr t d(off) tf Fig 11b. Switching Time Waveforms 5 IRFIB7N50LPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 τJ 0.01 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ τ3 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 Ri (°C/W) 0.2965 τi (sec) 0.001144 0.9847 1.4118 0.151939 1.705500 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case VGS(th) Gate threshold Voltage (V) 5.0 4.0 ID = 250µA 3.0 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13. Threshold Voltage vs.Temperature 6 www.irf.com IRFIB7N50LPbF EAS , Single Pulse Avalanche Energy (mJ) 2500 ID TOP 1.4A 1.7A BOTTOM 6.8A 2000 1500 1000 500 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 15V V(BR)DSS DRIVER L VDS D.U.T RG + V - DD IAS 20V tp tp 0.01Ω A I AS Fig 15a. Unclamped Inductive Test Circuit Fig 15b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V 10 V .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 16a. Gate Charge Test Circuit www.irf.com Charge Fig 16b. Basic Gate Charge Waveform 7 IRFIB7N50LPbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. For N-Channel HEXFET® Power MOSFETs 8 www.irf.com IRFIB7N50LPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E XAMP L E : T H IS IS AN IR F I840 G WIT H AS S E MB L Y L OT COD E 3 43 2 AS S E MB L E D ON WW 24 199 9 IN T H E AS S E MB L Y L IN E "K " P AR T N U MB E R IN T E R N AT IONAL R E CT IF IE R L OGO IR F I840G 924K 34 Note: "P" in assembly line position indicates "Lead-Free" AS S E MB L Y L OT CODE 32 D AT E COD E Y E AR 9 = 199 9 WE E K 24 L IN E K TO-220AB FullPak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04 www.irf.com 9