IRF IRFB16N60LPBF

SMPS MOSFET
PD - 95471
IRFB16N60LPbF
HEXFET® Power MOSFET
Applications
• Zero Voltage Switching SMPS
• Telecom and Server Power Supplies
• Uninterruptible Power Supplies
• Motor Control applications
• Lead-Free
VDSS RDS(on) typ. Trr typ. ID
385mΩ
600V
130ns
Features and Benefits
• SuperFast body diode eliminates the need for external
diodes in ZVS applications.
• Lower Gate charge results in simpler drive requirements.
• Enhanced dv/dt capabilities offer improved ruggedness.
• Higher Gate voltage threshold offers improved noise immunity .
16A
TO-220AB
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
IDM
16
PD @TC = 25°C Power Dissipation
310
W
2.5
±30
W/°C
V
10
-55 to + 150
V/ns
10
c
VGS
Linear Derating Factor
Gate-to-Source Voltage
d
dv/dt
TJ
Peak Diode Recovery dv/dt
TSTG
Storage Temperature Range
Operating Junction and
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Mounting torque, 6-32 or M3 screw
1.1(10)
Diode Characteristics
Symbol
Parameter
A
60
Min. Typ. Max. Units
N•m (lbf•in)
Conditions
IS
Continuous Source Current
–––
–––
16
ISM
(Body Diode)
Pulsed Source Current
–––
–––
60
showing the
integral reverse
–––
1.5
V
p-n junction diode.
TJ = 25°C, IS = 16A, VGS = 0V
ns
c
MOSFET symbol
A
(Body Diode)
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
ton
Forward Turn-On Time
www.irf.com
–––
–––
130
200
–––
240
360
–––
450
670
–––
1080 1620
–––
5.8
8.7
D
G
TJ = 25°C, IF = 16A
TJ = 125°C, di/dt = 100A/µs
f
S
f
f
f
nC TJ = 25°C, IS = 16A, VGS = 0V
TJ = 125°C, di/dt = 100A/µs
A
TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
1
7/7/04
IRFB16N60LPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS
∆V(BR)DSS/∆TJ
Drain-to-Source Breakdown Voltage
RDS(on)
–––
Breakdown Voltage Temp. Coefficient
–––
0.39
–––
V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
–––
385
460
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
mΩ
V
IDSS
Drain-to-Source Leakage Current
–––
–––
50
µA
VDS = 600V, VGS = 0V
–––
–––
2.0
mA
VDS = 480V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 30V
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
0.79
–––
Ω
f = 1MHz, open drain
IGSS
RG
–––
V
Conditions
600
VGS = 0V, ID = 250µA
VGS = 10V, ID = 9.0A
f
VDS = VGS, ID = 250µA
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
8.3
–––
–––
–––
–––
100
–––
–––
30
S
Conditions
gfs
Qg
Forward Transconductance
VDS = 50V, ID = 9.0A
Total Gate Charge
Qgs
Gate-to-Source Charge
Qgd
Gate-to-Drain ("Miller") Charge
–––
–––
46
VGS = 10V, See Fig. 7 & 15
td(on)
Turn-On Delay Time
–––
20
–––
VDD = 300V
tr
Rise Time
–––
44
–––
td(off)
Turn-Off Delay Time
–––
28
–––
RG = 1.8Ω
tf
Fall Time
–––
5.5
–––
VGS = 10V, See Fig. 11a & 11b
Ciss
Input Capacitance
–––
2720
–––
VGS = 0V
Coss
Output Capacitance
–––
260
–––
Crss
Reverse Transfer Capacitance
–––
20
–––
Coss eff.
Effective Output Capacitance
–––
120
–––
Coss eff. (ER)
Effective Output Capacitance
–––
100
–––
ID = 16A
nC
ns
VDS = 480V
f
ID = 16A
f
VDS = 25V
pF
ƒ = 1.0MHz, See Fig. 5
VGS = 0V,VDS = 0V to 480V
g
(Energy Related)
Avalanche Characteristics
Symbol
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
c
d
c
Typ.
–––
Max.
310
Units
mJ
–––
16
A
–––
31
mJ
Thermal Resistance
Typ.
Max.
Units
RθJC
Symbol
Junction-to-Case
Parameter
–––
0.4
°C/W
RθJA
Junction-to-Ambient
–––
62
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
‚ Starting TJ = 25°C, L = 2.5mH, RG = 25Ω,
IAS = 16A, dv/dt = 10V/ns. (See Figure 12a)
ƒ ISD ≤ 16A, di/dt ≤ 340A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C.
2
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% V DSS .
Coss eff.(ER) is a fixed capacitance that stores the same energy
as Coss while VDS is rising from 0 to 80% V DSS .
www.irf.com
IRFB16N60LPbF
1000
100
100
10
BOTTOM
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
5.0V
0.1
0.01
10
BOTTOM
5.0V
1
0.1
20µs PULSE WIDTH
Tj = 150°C
20µs PULSE WIDTH
Tj = 25°C
0.001
0.01
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
3.0
100
T J = 150°C
10
1
T J = 25°C
0.1
VDS = 50V
20µs PULSE WIDTH
0.01
ID = 15A
2.5
VGS = 10V
2.0
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (Α)
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
5.0V
1.5
1.0
0.5
0.0
4
6
8
10
12
14
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
16
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRFB16N60LPbF
100000
10000
20
Coss = Cds + Cgd
Ciss
1000
Energy (µJ)
C, Capacitance(pF)
25
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss
100
Crss
15
10
5
10
0
1
1
10
100
0
1000
VDS, Drain-to-Source Voltage (V)
300
400
500
600
700
Fig 6. Typ. Output Capacitance
Stored Energy vs. VDS
12.0
100.00
ID= 15A
VDS= 480V
VDS= 300V
10.0
ISD, Reverse Drain Current (A)
VGS , Gate-to-Source Voltage (V)
200
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
VDS= 120V
8.0
6.0
4.0
2.0
0.0
T J = 150°C
10.00
T J = 25°C
1.00
VGS = 0V
0.10
0
10
20
30
40
50
60
Q G Total Gate Charge (nC)
Fig 7. Typical Gate Charge vs.
Gate-to-Source Voltage
4
100
70
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-to-Drain Voltage (V)
Fig 8. Typical Source-Drain Diode
Forward Voltage
www.irf.com
IRFB16N60LPbF
18
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
16
14
10
ID, Drain Current (A)
100
100µsec
1msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
12
10
8
6
4
2
10msec
0
0.1
1
10
100
1000
10000
25
VDS, Drain-to-Source Voltage (V)
VGS
RG
RD
100
125
150
Fig 10. Maximum Drain Current vs.
Case Temperature
VDS
90%
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 11a. Switching Time Test Circuit
www.irf.com
75
T C , Case Temperature (°C)
Fig 9. Maximum Safe Operating Area
VDS
50
10%
VGS
td(on)
tr
t d(off)
tf
Fig 11b. Switching Time Waveforms
5
IRFB16N60LPbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
P DM
0.02
0.01
0.01
t1
t2
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty factor D =
2. Peak T
t1/ t 2
J = P DM x Z thJC
+T C
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case
VGS(th) Gate threshold Voltage (V)
5.0
4.5
4.0
3.5
ID = 250µA
3.0
2.5
2.0
-75
-50 -25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13. Threshold Voltage vs. Temperature
6
www.irf.com
1
IRFB16N60LPbF
EAS , Single Pulse Avalanche Energy (mJ)
600
ID
7.2A
10A
BOTTOM 16A
TOP
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14a. Maximum Avalanche Energy
vs. Drain Current
15V
V(BR)DSS
DRIVER
L
VDS
D.U.T
RG
+
- VDD
IAS
20V
tp
tp
A
0.01Ω
I AS
Fig 14b. Unclamped Inductive Test Circuit
Fig 14c. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS V
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
www.irf.com
Charge
Fig 15b. Basic Gate Charge Waveform
7
IRFB16N60LPbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 16. For N-Channel HEXFET® Power MOSFETs
8
www.irf.com
IRFB16N60LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
LOT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y LINE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.7/04
www.irf.com
9