KERSEMI IRF1405

www.kersemi.com
IRF1405
AUTOMOTIVE MOSFET
Typical Applications
●
●
●
●
●
HEXFET® Power MOSFET
Electric Power Steering (EPS)
Anti-lock Braking System (ABS)
Wiper Control
Climate Control
Power Door
D
VDSS = 55V
RDS(on) = 5.3mΩ
Benefits
●
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
G
ID = 169A†
S
Description
Specifically designed for Automotive applications, this
Stripe Planar design of HEXFET® Power MOSFETs
utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 175°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a
wide variety of other applications.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy‡
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Max.
Units
169†
118†
680
330
2.2
± 20
560
See Fig.12a, 12b, 15, 16
5.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.45
–––
62
°C/W
1
IRF1405
www.kersemi.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
55
–––
–––
2.0
69
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.057
4.6
–––
–––
–––
–––
–––
–––
170
44
62
13
190
130
110
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
5480
1210
280
5210
900
1500
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
5.3
mΩ VGS = 10V, ID = 101A „
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 25V, ID = 110A
20
VDS = 55V, VGS = 0V
µA
250
VDS = 44V, VGS = 0V, TJ = 150°C
200
VGS = 20V
nA
-200
VGS = -20V
260
ID = 101A
66
nC
VDS = 44V
93
VGS = 10V„
–––
VDD = 38V
–––
ID = 110A
ns
–––
RG = 1.1Ω
–––
VGS = 10V „
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 44V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 169†
showing the
A
G
integral reverse
––– ––– 680
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 101A, VGS = 0V „
––– 88 130
ns
TJ = 25°C, IF = 101A
––– 250 380
nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Starting TJ = 25°C, L = 0.11mH
RG = 25Ω, IAS = 101A. (See Figure 12).
ƒ ISD ≤ 101A, di/dt ≤ 210A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
‡ Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
†
IRF1405
www.kersemi.com
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
100
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
4.5V
100
Fig 1. Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
100
10
V DS = 25V
20µs PULSE WIDTH
6
8
10
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
4
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
20µs PULSE WIDTH
TJ = 175 °C
10
0.1
12
ID = 169A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF1405
www.kersemi.com
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
Coss = Cds + Cgd
10000
Ciss
Coss
1000
Crss
ID = 101A
VDS = 44V
VDS = 27V
VGS , Gate-to-Source Voltage (V)
100000
16
12
8
4
100
FOR TEST CIRCUIT
SEE FIGURE 13
0
1
10
0
100
60
120
180
240
300
Q G , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
10000
TJ = 175 ° C
1000
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
100us
100
TJ = 25 ° C
10
1ms
10ms
10
1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10us
3.0
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
100
IRF1405
www.kersemi.com
200
VDS
LIMITED BY PACKAGE
VGS
160
RD
D.U.T.
I D , Drain Current (A)
RG
+
-VDD
120
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
80
Fig 10a. Switching Time Test Circuit
40
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P DM
0.01
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
IRF1405
www.kersemi.com
EAS , Single Pulse Avalanche Energy (mJ)
1200
1 5V
ID
41A
71A
BOTTOM 101A
TOP
1000
D R IV E R
L
VDS
D .U .T
RG
+
- VD D
IA S
20V
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
VGS(th) , Variace ( V )
3.5
ID = 250µA
3.0
2.5
2.0
.2µF
.3µF
D.U.T.
+
V
- DS
1.5
-75
VGS
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
IRF1405
www.kersemi.com
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
600
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 101A
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·tav
7
IRF1405
www.kersemi.com
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+

• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
D=
Period
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 17. For N-channel HEXFET® power MOSFETs
8
IRF1405
www.kersemi.com
Package Outline
TO-220AB
Dimensions are shown in millimeters (inches)
2.87 (.11 3)
2.62 (.10 3)
10 .5 4 (.415 )
10 .2 9 (.405 )
3.7 8 ( .14 9 )
3.5 4 ( .13 9 )
-A -
-B4 .6 9 (.1 85 )
4 .2 0 (.1 65 )
1.32 (.05 2)
1.22 (.04 8)
6 .4 7 (.2 55 )
6 .1 0 (.2 40 )
4
1 5.24 (.60 0)
1 4.84 (.58 4)
L E A D A S S IG NM E NT S
1 - GATE
2 - D R A IN
3 - S O U RC E
4 - D R A IN
1 .1 5 (.0 4 5)
M IN
1
2
3
1 4.09 (.55 5)
1 3.47 (.53 0)
4 .0 6 (.160 )
3 .5 5 (.140 )
3X
3X
1 .4 0 (.0 55 )
1 .1 5 (.0 45 )
0 .9 3 (.0 37 )
0 .6 9 (.0 27 )
0.36 (.0 14 )
3X
M
B A M
0.55 (.02 2)
0.46 (.01 8)
2.92 (.11 5)
2.64 (.10 4)
2.54 (.10 0)
2X
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 14 .5 M , 1 982 .
2 C O N TR O L LIN G D IM E N S IO N : INC H
3 O U TL IN E C O N F O R MS TO J E D E C O U T L IN E TO -2 20 A B .
4 H E A T S IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
E X A M P L E : TH IS IS A N IR F1 0 1 0
W IT H A S S E M B L Y
LOT C ODE 9B1M
A
IN TE R N A TIO N A L
R E C TIF IE R
LOGO
ASSEMBLY
LOT CO DE
PART NU MBER
IR F 10 1 0
9246
9B
1M
D A TE C O D E
(Y Y W W )
YY = YEAR
W W = W EEK