BC857BF...BC860BF PNP Silicon AF Transistor • For AF input stages and driver applications 2 3 • High current gain • Low collector-emitter saturation voltage 1 • Low noise between 30 Hz and 15 kHz • Complementary types: BC847BF, BC848BF BC849BF, BC850BF (NPN) Type Marking Pin Configuration Package BC857BF 3Fs 1=B 2=E 3=C TSFP-3 BC858BF 3Ks 1=B 2=E 3=C TSFP-3 BC859BF 4Bs 1=B 2=E 3=C TSFP-3 BC860BF 4Fs 1=B 2=E 3=C TSFP-3 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value V BC857BF, BC860BF 45 BC858BF, BC859BF 30 Collector-emitter voltage Unit VCES BC857BF, BC860BF 50 BC858BF, BC859BF 30 Collector-base voltage VCBO BC857BF, BC860BF 50 BC858BF, BC859BF 30 Emitter-base voltage VEBO BC857BF, BC860BF 5 BC858BF, BC859BF 5 Collector current IC 100 Peak collector current ICM 200 Peak base current IBM 200 Peak emitter current IEM 200 mA Total power dissipation, TS ≤ 128°C Ptot 250 mW Junction temperature Tj 150 °C Storage temperature Tstg 1 mA -65 ... 150 Jun-16-2004 BC857BF...BC860BF Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS Value ≤ 90 Unit K/W Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO V IC = 10 mA, IB = 0 mA, BC857BF, BC860BF 45 - - IC = 10 mA, IB = 0 mA, BC858BF, BC859BF 30 - - IC = 10 µA, IE = 0 mA, BC857BF, BC860BF 50 - - IC = 10 µA, IE = 0 mA, BC858BF, BC859BF 30 - - IC = 10 µA, VBE = 0 V, BC857BF, BC860BF 50 - - IC = 10 µA, VBE = 0 V, BC858BF, BC859BF 30 - - 5 - - Collector-base breakdown voltage V(BR)CBO Collector-emitter breakdown voltage V(BR)CES Emitter-base breakdown voltage V(BR)EBO IE = 1 µA, IC = 0 µA Collector-base cutoff current µA I CBO VCB = 30 V, IE = 0 A - - 0.015 VCB = 30 V, IE = 0 A, TA = 150 °C - - 5 DC current gain2) - h FE IC = 10 µA, VCE = 5 V - 250 - IC = 2 mA, VCE = 5 V 220 290 475 Collector-emitter saturation voltage2) mV VCEsat IC = 10 mA, IB = 0.5 mA - 75 300 IC = 100 mA, IB = 5 mA - 250 650 IC = 10 mA, IB = 0.5 mA - 700 - IC = 100 mA, IB = 5 mA - 850 - IC = 2 mA, VCE = 5 V 600 650 750 IC = 10 mA, VCE = 5 V - - 820 Base emitter saturation voltage 2) VBEsat Base-emitter voltage2) VBE(ON) 1For calculation of R thJA please refer to Application Note Thermal Resistance 2Pulse test: t < 300µs; D < 2% 2 Jun-16-2004 BC857BF...BC860BF AC Characteristics Transition frequency fT - 250 - MHz Ccb - 3 - pF Ceb - 10 - h11e - 4.5 - kΩ h12e - 2 - 10-4 h21e - 330 - - h22e - 30 - µS IC = 20 mA, VCE = 5 V, f = 100 MHz Collector-base capacitance VCB = 10 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Short-circuit input impedance IC = 2 mA, VCE = 5 V, f = 1 kHz Open-circuit reverse voltage transf. ratio IC = 2 mA, VCE = 5 V, f = 1 kHz Short-circuit forward current transf. ratio IC = 2 mA, VCE = 5 V, f = 1 kHz Open-circuit output admittance IC = 2 mA, VCE = 5 V, f = 1 kHz Noise figure dB F IC = 200 µA, VCE = 5 V, f = 1 kHz, ∆ f = 200 Hz, RS = 2 kΩ, BC859BF - 1 4 - 1 4 - - 0.11 IC = 200 µA, VCE = 5 V, f = 1 kHz, ∆ f = 200 Hz, RS = 2 kΩ, BC860BF Equivalent noise voltage Vn µV IC = 200 µA, V CE = 5 V, RS = 2 kΩ, f = 10...50 Hz , BF860BF 3 Jun-16-2004 BC857BF...BC860BF DC current gain hFE = ƒ(IC) Collector-emitter saturation voltage VCE = 5 V IC = ƒ(VCEsat), hFE = 20 EHP00382 10 3 h FE 5 EHP00380 10 2 mA ΙC 100 C 100 C 25 C -50 C 25 C -50 C 10 2 10 1 5 5 10 1 10 5 5 10 0 10 -2 5 10 -1 5 10 0 5 10 1 mA 10 ΙC 0 10 -1 2 0 0.1 0.2 0.4 0.3 V 0.5 VCEsat Base-emitter saturation voltage Collector cutoff current ICBO = ƒ(TA) IC = ƒ(V BEsat), hFE = 20 VCB = 30 V EHP00379 10 2 mA ΙC EHP00381 10 4 nA Ι CB0 10 10 3 100 C 25 C -50C 1 5 max 10 2 5 5 typ 10 1 5 10 0 5 10 0 5 10 -1 10 -1 0 0.2 0.4 0.6 0.8 V 1.2 V BEsat 0 50 100 C 150 TA 4 Jun-16-2004 BC857BF...BC860BF Transition frequency fT = ƒ(IC) VCE = 5 V Collector-base capacitance CCB= ƒ (VCB0) Emitter-base capacitance CEB= ƒ (VEB0) EHP00378 10 3 C CB0 ( C EB0 ) MHz fT 5 12 pF BC 856...860 EHP00376 10 8 10 2 C EBO 6 5 4 C CBO 2 10 1 10 -1 5 10 0 5 10 1 mA 0 10 -1 10 2 5 10 0 V ΙC VCB0 Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 2 300 K/W RthJS mW Ptot 10 1 (VEB0 ) 200 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 1 150 10 0 100 50 0 0 20 40 60 80 100 120 °C 10 -1 -6 10 150 TS 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 5 Jun-16-2004 BC857BF...BC860BF h parameter he = ƒ(IC) normalized VCE = 5V Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) P totmax/P totDC 10 3 10 2 he 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 BC 856...860 EHP00383 5 VCE = 5 V h 11e 10 1 5 h 12e 10 0 5 h 21e h 22e 10 0 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 10 -1 0 10 -1 5 10 0 mA tp ΙC h parameter he = ƒ(VCE ) normalized Noise figure F = ƒ(VCE) IC = 2mA IC = 0.2mA, R S = 2kΩ , f = 1kHz 2.0 BC 856...860 he EHP00384 20 dB BC 856...860 EHP00385 F Ι C = 2 mA h 11 15 1.5 1.0 10 h12 h 22 0.5 0 10 1 0 10 20 V 5 0 10 -1 30 VCE 5 10 0 5 10 1 V 10 2 VCE 6 Jun-16-2004 BC857BF...BC860BF Noise figure F = ƒ(f) Noise figure F = ƒ(I C) VCE = 5V, f = 120Hz IC = 0.2mA, VCE = 5V, RS = 2 kΩ 20 BC 856...860 EHP00386 20 dB BC 856...860 EHP00387 dB F F 15 15 R S = 1 MΩ 100 kΩ 10 k Ω 10 10 500 Ω 5 5 1 kΩ 0 10 -2 10 -1 10 0 10 1 0 10 -3 kHz 10 2 10 -2 10 -1 10 0 ΙC f Noise figure F = ƒ(IC ) Noise figure F = ƒ(I C) VCE = 5V, f = 10kHz VCE = 5V, f = 1kHz 20 mA 10 1 BC 856...860 EHP00388 20 dB BC 856...860 EHP00389 dB F F 15 15 R S = 1 MΩ 100 k Ω R S = 1 MΩ 100 k Ω 10 kΩ 10 10 500 Ω 10 kΩ 1 kΩ 5 5 500 Ω 0 10 -3 10 -2 10 -1 10 0 1 kΩ 0 10-3 mA 10 1 10 -2 10 -1 10 0 mA 10 1 ΙC ΙC 7 Jun-16-2004 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.