PROFET® BTS 410 F2 Smart Highside Power Switch Features Product Summary Overvoltage protection Operating voltage On-state resistance Load current (ISO) Current limitation • Overload protection • Current limitation • Short circuit protection • Thermal shutdown • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection1) • Undervoltage and overvoltage shutdown with auto-restart and hysteresis • Open drain diagnostic output • Open load detection in ON-state • CMOS compatible input • Loss of ground and loss of Vbb protection • Electrostatic discharge (ESD) protection Vbb(AZ) Vbb(on) RON IL(ISO) IL(SCr) 65 V 4.7 ... 42 V 220 mΩ 1.8 A 2.7 A TO-220AB/5 5 5 5 1 Straight leads Standard 1 SMD Application • µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • Most suitable for inductive loads • Replaces electromechanical relays, fuses and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Fully protected by embedded protection functions. + V bb Voltage Overvoltage Current Gate source protection limit protection 3 V Logic 2 Voltage Charge pump sensor Level shifter Limit for unclamped ind. loads Rectifier IN OUT 5 Temperature sensor Open load ESD 4 Logic Load detection ST Short circuit detection GND PROFET 1 Signal GND 1) Load GND With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistors in series with IN and ST connections, reverse load current limited by connected load. Semiconductor Group 1 03.97 BTS 410 F2 Pin Symbol Function 1 GND - Logic ground 2 IN I Input, activates the power switch in case of logical high signal 3 Vbb + Positive power supply voltage, the tab is shorted to this pin 4 ST S Diagnostic feedback, low on failure 5 OUT (Load, L) O Output to the load Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 3) Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 Ω, RL= 6.6 Ω, td= 400 ms, IN= low or high Load current (Short circuit current, see page 4) Operating temperature range Storage temperature range Power dissipation (DC), TC ≤ 25 °C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150°C, TC = 150°C const. IL = 1.8 A, ZL = 2.3 H, 0 Ω: Electrostatic discharge capability (ESD) IN: (Human Body Model) all other pins: Symbol Vbb VLoad dump4) IL Tj Tstg Ptot EAS VESD Values 65 100 Unit V V self-limited -40 ...+150 -55 ...+150 50 A °C 4.5 1 2 J kV -0.5 ... +6 ±5.0 ±5.0 V mA Values typ max -2.5 -75 35 -- Unit W acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 VIN IIN IST Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagrams page 6 Thermal Characteristics Parameter and Conditions Thermal resistance 2) 3) 4) 5) Symbol chip - case: RthJC junction - ambient (free air): RthJA SMD version, device on PCB5): min ---- K/W Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group 2 BTS 410 F2 Electrical Characteristics Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Values min typ max Unit Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5) IL = 1.6 A Tj=25 °C: Tj=150 °C: Nominal load current, ISO Norm (pin 3 to 5) VON = 0.5 V, TC = 85 °C Output current (pin 5) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 7, Tj =-40...+150°C Turn-on time IN to 90% VOUT: to 10% VOUT: Turn-off time IN RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C Operating Parameters Operating voltage 6) Undervoltage shutdown Tj =-40...+150°C: Tj =25°C: Tj =-40...+150°C: Tj =-40...+150°C: Undervoltage restart Undervoltage restart of charge pump see diagram page 12 Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) Tj =-40...+150°C: Overvoltage shutdown Tj =-40...+150°C: Overvoltage restart Tj =-40...+150°C: Overvoltage hysteresis Tj =-40...+150°C: Overvoltage protection7) Ibb=4 mA Tj=-40...+25°C: Standby current (pin 3) VIN=0 Tj= 150°C: Leakage output current (included in Ibb(off)) VIN=0 Operating current (Pin 1)8), VIN=5 V, Tj =-40...+150°C 6) 7) RON -- 190 220 390 440 IL(ISO) IL(GNDhigh) 1.6 -- 1.8 -- -1 A mA ton toff 12 5 --- 125 85 µs dV /dton -- -- 3 V/µs -dV/dtoff -- -- 6 V/µs Vbb(on) Vbb(under) 4.7 2.9 2.7 --- ----5.6 42 4.5 4.7 4.9 6.0 V V ∆Vbb(under) -- 0.1 -- V Vbb(over) Vbb(o rst) ∆Vbb(over) Vbb(AZ) 42 40 -65 --0.1 70 52 ---- V V V V 10 18 -- 15 25 20 µA IL(off) ---- IGND -- 1 2.1 mA Vbb(u rst) Vbb(ucp) Ibb(off) At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V Meassured without load. See also VON(CL) in table of protection functions and circuit diagram page 6. Semiconductor Group 3 mΩ V V µA BTS 410 F2 Protection Functions Initial peak short circuit current limit (pin 3 to 5)9), IL(SCp) ( max 450 µs if VON > VON(SC) ) Tj =-40°C: Tj =25°C: =+150°C: Tj Overload shutdown current limit IL(SCr) VON= 8 V, Tj = Tjt (see timing diagrams, page 10) Short circuit shutdown delay after input pos. slope VON > VON(SC), Tj =-40..+150°C: td(SC) 4.0 3.5 2.0 -5.5 3.5 11 10 7.5 A -- 2.7 -- A -- -- 450 µs VON(CL) 61 -- 68 -- 73 75 V VON(SC) Tjt ∆Tjt -Vbb -150 --- 8.5 -10 -- ---32 V °C K V 2 -- 150 VIN(T+) VIN(T-) ∆ VIN(T) IIN(off) IIN(on) td(ST SC) 1.5 1.0 -1 10 -- --0.5 -25 -- 2.4 --30 70 450 V V V µA µA µs td(ST) 300 -- 1400 µs VST(high) VST(low) 5.0 -- 6 -- -0.4 V min value valid only, if input "low" time exceeds 60 µs Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL) IL= 40 mA, Tj =-40..+150°C: IL= 1 A, Tj =-40..+150°C: Short circuit shutdown detection voltage (pin 3 to 5) Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 3 to 1) 10) Diagnostic Characteristics Open load detection current (on-condition) Tj=-40 ..150°C: Input and Status Feedback11) Input turn-on threshold voltage Tj =-40..+150°C: Tj =-40..+150°C: Input turn-off threshold voltage Input threshold hysteresis Off state input current (pin 2), VIN = 0.4 V On state input current (pin 2), VIN = 5 V Status invalid after positive input slope Tj=-40 ... +150°C: (short circuit) Status invalid after positive input slope Tj=-40 ... +150°C: (open load) Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +50 uA: ST low voltage Tj =-40...+150°C, IST = +1.6 mA: 8) IL (OL) mA Add IST, if IST > 0, add IIN, if VIN>5.5 V Short circuit current limit for max. duration of td(SC) max=450 µs, prior to shutdown 10) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 6). 11) If a ground resistor R GND is used, add the voltage drop across this resistor. 9) Semiconductor Group 4 BTS 410 F2 Truth Table Normal operation Open load Short circuit to GND Short circuit to Vbb Overtemperature Undervoltage Overvoltage L = "Low" Level H = "High" Level Input- Output level level 412 B2 410 D2 410 E2/F2 410 G2 410 H2 L H L H L H L H L H L H L H L H H H L H H L L H L L L14) L14) L L H H H L H L H H (L13)) L L L14) L14) L L H H H L H L H H (L13)) L L H H H H H H H L H H H H (L13)) L L H H H H H H L H H L L H L L H H H H 12) H L L H H L L L L L L Status X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 11...12) 12) Power Transistor off, high impedance, versions BTS 410H, BTS 412B: internal pull up current source for open load detection. 13) Low resistance short V to output may be detected in ON-state by the no-load-detection bb 14) No current sink capability during undervoltage shutdown Semiconductor Group 5 BTS 410 F2 Terms Short circuit detection Fault Condition: VON > 8.5 V typ.; IN high Ibb 3 I IN 2 IL V VST IN OUT PROFET I ST V + V bb Vbb IN 4 VON V ON 5 ST GND 1 bb R OUT I GND VOUT Short circuit detection Logic unit GND Inductive and overvoltage output clamp Input circuit (ESD protection) + V bb R IN V I ESDZDI1 ZDI2 Z VON I I OUT GND GND PROFET ZDI1 6 V typ., ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode V clamped to 68 V typ. ON may result in a drift of the zener voltage (increase of up to 1 V). Overvolt. and reverse batt. protection + V bb Status output V +5V R ST(ON) R IN Logic ST R ST ST V GND Z2 IN PROFET Z1 ESDZD GND R GND Signal GND ESD-Zener diode: 6 V typ., max 5 mA; RST(ON) < 250 Ω at 1.6 mA, ESD zener diodes are not VZ1 = 6.2 V typ., VZ2 = 70 V typ., RGND= 150 Ω, RIN, to be used as voltage clamp at DC conditions. RST= 15 kΩ Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). Semiconductor Group 6 BTS 410 F2 Open-load detection Vbb disconnect with energized inductive load ON-state diagnostic condition: VON < RON * IL(OL); IN high 3 + V bb high Vbb IN 2 OUT PROFET VON ON 5 ST 4 GND 1 OUT Open load detection Logic unit V bb Normal load current can be handled by the PROFET itself. Vbb disconnect with charged external inductive load GND disconnect S 3 IN Vbb 3 high 2 Vbb IN 2 PROFET 4 V V bb IN V OUT PROFET OUT 5 4 1 GND 1 D GND ST ST 5 ST V GND V bb If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Inductive Load switch-off energy dissipation GND disconnect with GND pull up E bb 3 2 E AS Vbb IN PROFET 4 OUT IN 5 ST PROFET GND = 1 ELoad V bb OUT ST EL GND V V bb V IN ST V ZL GND { L RL ER Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. Energy stored in load inductance: 2 EL = 1/2·L·I L While demagnetizing load inductance, the energy dissipated in PROFET is EAS= Ebb + EL - ER= ∫ VON(CL)·iL(t) dt, Semiconductor Group 7 BTS 410 F2 with an approximate solution for RL > 0 Ω: EAS= IL· L IL·RL ·(V + |VOUT(CL)|)· ln (1+ ) |VOUT(CL)| 2·RL bb Maximum allowable load inductance for a single switch off Typ. transient thermal impedance chip case ZthJC = f(tp, D), D=tp/T L = f (IL ); Tj,start = 150°C,TC = 150°C const., Vbb = 12 V, RL = 0 Ω ZthJC [K/W] 10 L [mH] 10000 1 1000 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] 100 1.5 1.75 2 2.25 2.5 2.75 3 IL [A] Semiconductor Group 8 BTS 410 F2 Options Overview all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection with 150 Ω in GND connection, protection against loss of ground Type Logic version BTS 412 B2 410D2 410E2 410F2 410G2 410H2 Overtemperature protection with hysteresis Tj >150 °C, latch function15)16) Tj >150 °C, with auto-restart on cooling Short circuit to GND protection B D X X E F G X X X X X X X X X 308 H X switches off when VON>3.5 V typ. and Vbb> 7 V typ15) (when first turned on after approx. 150 µs) switches off when VON>8.5 V typ.15) (when first turned on after approx. 150 µs) 307 X X X Achieved through overtemperature protection X Open load detection in OFF-state with sensing current 30 µA typ. in ON-state with sensing voltage drop across power transistor X X X X X X X X X X X X X X X X X X X X X X - X overtemperature X X X X X X X X short circuit to GND X X X X - X X X short to Vbb X -18) -18) -18) -18) X X X open load X X X X X X X X undervoltage X X - - - - X - overvoltage X X - - - - - - X X X X X X X X X X X X X X X X X X X X X X X Undervoltage shutdown with auto restart Overvoltage shutdown with auto restart17) Status feedback for Status output type CMOS Open drain Output negative voltage transient limit (fast inductive load switch off) to Vbb - VON(CL) X X X X X X Load current limit high level (can handle loads with high inrush currents) low level (better protection of application) Protection against loss of GND X 15) X X Latch except when Vbb -VOUT < VON(SC) after shutdown. In most cases VOUT = 0 V after shutdown (VOUT ≠ 0 V only if forced externally). So the device remains latched unless Vbb < VON(SC) (see page 4). No latch between turn on and td(SC). 16) With latch function. Reseted by a) Input low, b) Undervoltage 17) No auto restart after overvoltage in case of short circuit 18) Low resistance short V to output may be detected in ON-state by the no-load-detection bb Semiconductor Group 9 BTS 410 F2 Timing diagrams Figure 3a: Turn on into short circuit, Figure 1a: Vbb turn on: IN IN t d(bb IN) V bb ST V VOUT OUT td(SC) A I ST open drain L t t A in case of too early VIN=high the device may not turn on (curve A) td(bb IN) approx. 150 µs td(SC) approx. -- µs if Vbb - VOUT > 8.5 V typ. Figure 3b: Turn on into overload, Figure 2a: Switching an inductive load IN IN t ST IL d(ST) I L(SCp) *) I L(SCr) V OUT ST IL I L(OL) t t Heating up may require several seconds, Vbb - VOUT < 8.5 V typ. *) if the time constant of load is too large, open-load-status may occur Semiconductor Group 10 BTS 410 F2 Figure 3c: Short circuit while on: Figure 5a: Open load: detection in ON-state, turn on/off to open load IN IN ST ST V OUT IL V I **) t d(ST) OUT L open t t **) current peak approx. 20 µs Figure 4a: Overtemperature, Figure 5b: Open load: detection in ON-state, open load occurs in on-state Reset if (IN=low) and (Tj<Tjt) IN IN t d(ST OL1) t ST d(ST OL2) ST V V OUT OUT I T normal open normal L J t t td(ST OL1) = tbd µs typ., td(ST OL2) = tbd µs typ *) ST goes high , when VIN=low and Tj<Tjt Semiconductor Group 11 BTS 410 F2 Figure 6a: Undervoltage: Figure 7a: Overvoltage: IN IN V Vbb bb V ON(CL) Vbb(over) V bb(o rst) Vbb(u cp) Vbb(u rst) V bb(under) V OUT V OUT ST ST open drain t t Figure 6b: Undervoltage restart of charge pump Figure 9a: Overvoltage at short circuit shutdown: VON(CL) V on IN V V V bb(u rst) V bb(over) off-state on-state off-state Vbb V bb(o rst) Output short to GND V OUT short circuit shutdown I bb(o rst) L bb(u cp) V bb(under) ST V bb t charge pump starts at Vbb(ucp) =5.6 V typ. Semiconductor Group Overvoltage due to power line inductance. No overvoltage autorestart of PROFET after short circuit shutdown. 12 BTS 410 F2 SMD TO-220AB/5, Opt. E3062 Ordering code Package and Ordering Code BTS410F2 E3062A T&R: All dimensions in mm Standard TO-220AB/5 BTS 410 F2 Ordering code Q67060-S6103-A2 Changed since 04.96 Date Change Mar. EAS maximum rating and diagram 1997 and ZthJC diagram added ESD capability (except Input) specified to 2kV, RthJA SMD specified IL(GND high) max reduced from 10 to 1 mA Option Overview table columns for BTS307/308 added Fig. 1a: Vout-spike at Vbb-turn-on added TO-220AB/5, Option E3043 Ordering code BTS 410 F2 E3043 Semiconductor Group Q67060-S6103-A4 Q67060-S6103-A3 13