IRF 20MT120UF

I27124 rev. D 02/03
5/
20MT120UF
"FULL-BRIDGE" IGBT MTP
UltraFast NPT IGBT
Features
• UltraFast Non Punch Through (NPT)
Technology
• Positive VCE(ON)Temperature Coefficient
• 10µs Short Circuit Capability
• HEXFRED TM Antiparallel Diodes with
UltraSoft Reverse Recovery
• Low Diode VF
• Square RBSOA
• Aluminum Nitride DBC
• Very Low Stray Inductance Design for
High Speed Operation
• UL approved (File E78996)
VCES = 1200V
IC = 40A
T C = 25°C
Benefits
• Optimized for Welding, UPS and SMPS
Applications
• Rugged with UltraFast Performance
• Benchmark Efficiency above 20KHz
• Outstanding ZVS and Hard Switching
Operation
• Low EMI, requires Less Snubbing
• Excellent Current Sharing in Parallel
Operation
• Direct Mounting to Heatsink
• PCB Solderable Terminals
• Very Low Junction-to-Case Thermal
Resistance
MMTP
Absolute Maximum Ratings
Parameters
VCES
Collector-to-Emitter Breakdown Voltage
I
Continuos Collector Current
C
I
CM
Pulsed Collector Current
I
LM
Clamped Inductive Load Current
I
F
Diode Continuous Forward Current
FM
Diode Maximum Forward Current
I
Max
Units
1200
V
@ TC = 25°C
40
A
@ TC = 106°C
20
100
100
@ TC = 106°C
25
100
VGE
Gate-to-Emitter Voltage
± 20
VISOL
RMS Isolation Voltage, Any Terminal to Case, t = 1 min
2500
PD
Maximum Power Dissipation (only IGBT)
www.irf.com
@ TC = 25°C
240
@ TC = 100°C
96
V
W
1
20MT120UF
I27124 rev. D 02/03
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
V(BR)CES
∆V(BR)CES/
∆T J
VCE(ON)
Min Typ Max Units Test Conditions
Collector-to-Emitter Breakdown Voltage 1200
Temperature Coeff. of
Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
Gate Threshold Voltage
∆VGE(th) / Temperature Coeff. of
∆T J
Threshold Voltage
g fe
I CES
3.29
4.42
3.87
5.32
3.99
4
3.59
4.66
4.11
5.70
4.27
6
-14
Transconductance
Zero Gate Voltage Collector Current (1)
17.5
0.7
2.9
I GES
V
V/°C
+1.3
Gate-to-Emitter Leakage Current
250
3.0
9.0
±250
VGE = 0V, I C = 250µA
VGE = 0V, I C = 3mA (25-125°C)
V
VGE
VGE
VGE
VGE
VGE
V
VCE
mV/°C VCE
S
µA
mA
nA
VCE
VGE
VGE
VGE
VGE
=
=
=
=
=
=
=
15V, I C = 20A
15V, I C = 40A
15V, I C = 20A T J = 125°C
15V, I C = 40A T J = 125°C
15V, I C = 20A T J = 150°C
VGE, I C = 250µA
VGE, I C = 3mA (25-125°C)
=
=
=
=
=
50V, IC = 20A, PW =
0V, V CE = 1200V, TJ
0V, V CE = 1200V, TJ
0V, V CE = 1200V, TJ
± 20V
80µs
= 25°C
= 125°C
= 150°C
(1) I CES includes also opposite leg overall leakage
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min Typ Max Units Test Conditions
Qg
Qge
Qgc
Eon
Eoff
Etot
Total Gate Charge (turn-on)
Gate-Emitter Charge (turn-on)
Gate-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
176
19
89
513
402
915
264
30
134
770
603
1373
nC
Eon
Eoff
Etot
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
930
610
1540
1395
915
2310
µJ
Cies
Coes
Cres
RBSOA
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
2530 3790
344
516
78
117
full square
pF
SCSOA
Short Circuit Safe Operating Area
2
10
µJ
µs
IC = 20A
VCC = 600V
VGE = 15V
VCC = 600V, IC = 20A
VGE = 15V, Rg = 5Ω, L = 200µH
TJ = 25°C, Energy losses include tail
and diode reverse recovery
VCC = 600V, IC = 20A
VGE = 15V, Rg = 5Ω, L = 200µH
TJ = 125°C, Energy losses include tail
and diode reverse recovery
VGE = 0V
VCC = 30V
f = 1.0 MHz
TJ = 150°C, IC = 120A
VCC = 1000V, Vp = 1200V
Rg = 5Ω, VGE = +15V to 0V
TJ = 150°C
VCC = 900V, Vp = 1200V
Rg = 5Ω, VGE = +15V to 0V
www.irf.com
20MT120UF
I27124 rev. D 02/03
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min
V FM
Diode Forward Voltage Drop
Erec
trr
Irr
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Typ Max Units Test Conditions
2.48
3.28
2.44
3.45
2.21
420
98
33
2.94
3.90
2.84
4.14
2.93
630
150
50
V
I C = 20A
I C = 40A
I C = 20A, T J = 125°C
I C = 40A, T J = 125°C
I C = 20A, T J = 150°C
VGE = 15V, Rg = 5Ω, L = 200µH
VCC = 600V, IC = 20A
T J = 125°C
µJ
ns
A
Thermal- Mechanical Specifications
Parameters
Min
TJ
Operating Junction Temperature Range
TSTG
Storage Temperature Range
RthJC
Junction-to-Case
RthCS
Case-to-Sink
Typ
Max
Units
- 40
150
°C
- 40
125
IGBT
0.35
0.52
Diode
0.40
0.61
Module
0.06
°C/ W
(Heatsink Compound Thermal Conductivity = 1 W/mK)
Clearance ( external shortest distance in air
5.5
mm
between two terminals)
Creepage (shortest distance along external
8
surface of the insulating material between 2 terminals)
T
Mounting Torque
Wt
Weight
(2)
3 ± 10%
Nm
66
g (oz)
(2) A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the
compound. Lubricated threads
www.irf.com
3
20MT120UF
50
250
40
200
30
150
Ptot (W)
IC (A)
I27124 rev. D 02/03
20
100
10
50
0
0
20
40
60
80
0
100 120 140 160
0
20
40
60
T C (°C)
80
100 120 140 160
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
1
1ms
IC (A)
IC (A)
100 µs
10
DC
0.1
1
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
4
100
10 µs
10
10000
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
www.irf.com
20MT120UF
I27124 rev. D 02/03
100
VGE
VGE
VGE
VGE
VGE
= 15V
= 12V
= 10V
= 8.0V
VGE
VGE
VGE
VGE
VGE
80
60
ICE (A)
ICE (A)
80
100
= 18V
40
20
= 18V
= 15V
= 12V
= 10V
= 8.0V
60
40
20
0
0
0
2
4
6
8
10
0
2
VCE (V)
VGE
VGE
VGE
VGE
VGE
8
10
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
120
= 18V
= 15V
= 12V
= 10V
= 8.0V
-40°C
25°C
125°C
100
80
60
IF (A)
I CE (A)
80
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
100
4
60
40
40
20
20
0
0
0
2
4
6
8
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
www.irf.com
10
0.0
1.0
2.0
3.0
4.0
5.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
5
20MT120UF
I27124 rev. D 02/03
20
20
18
16
ICE = 40A
ICE = 20A
16
ICE = 10A
ICE = 20A
14
ICE = 10A
14
ICE = 40A
12
VCE (V)
VCE (V)
18
10
8
12
10
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
300
18
16
ICE = 10A
ICE = 20A
14
ICE = 40A
T J = 25°C
250
T J = 150°C
200
12
ICE (A)
VCE (V)
20
VGE (V)
VGE (V)
10
8
150
100
6
4
50
2
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
6
15
20
0
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
20MT120UF
I27124 rev. D 02/03
2400
1000
2000
Energy (µJ)
Swiching Time (ns)
EON
1600
1200
EOFF
800
tdOFF
tF
100
tdON
400
tR
0
10
0
10
20
30
40
0
50
10
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 5Ω; VGE= 15V
40
50
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
2000
1000
1600
EON
tdOFF
Swiching Time (ns)
Energy (µJ)
30
IC (A)
1200
EOFF
800
tF
100
tdON
400
tR
0
10
0
10
20
30
40
RG ( )
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
www.irf.com
50
60
0
10
20
30
40
50
60
RG ( )
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
7
20MT120UF
I27124 rev. D 02/03
40
40
RG = 5.0Ω
30
RG = 10 Ω
IRR (A)
IRR (A)
30
R G = 30 Ω
20
R G = 50 Ω
10
20
10
0
0
0
5
10
15
20
25
30
35
0
10
20
30
IF (A)
40
3.0
35
2.5
30
2.0
Q RR (µC)
IRR (A)
50
60
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 5.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
25
5.0Ω
10 Ω
20A
50Ω
1.0
15
0.5
30A
30Ω
1.5
20
10A
0.0
10
0
200
400
600
diF /dt (A/µs)
Fig. 19- Typical Diode I RR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 5.0A; TJ = 150°C
8
40
RG ( Ω)
800
1000
0
200
400
600
800
1000
1200
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
20MT120UF
I27124 rev. D 02/03
10000
Capacitance (pF)
Cies
1000
Coes
100
Cres
10
0
20
40
60
80
100
VCE (V)
Fig. 21- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
16
14
600V
12
VGE (V)
10
8
6
4
2
0
0
40
80
120
160
200
Q G , Total Gate Charge (nC)
Fig. 22 - Typical Gate Charge vs. VGE
ICE = 5.0A; L = 600µH
www.irf.com
9
20MT120UF
I27124 rev. D 02/03
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ2
τ3
τ3
Ci= τi/Ri
Ci= i/Ri
0.001
Ri (°C/W) τi (sec)
0.161
0.000759
0.210
0.017991
0.147
0.06094
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ2
τ3
τ3
Ci= τi/Ri
Ci= i/Ri
0.001
Ri (°C/W) τi (sec)
0.238
0.001017
0.312
0.033081
0.061
0.77744
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
10
www.irf.com
20MT120UF
I27124 rev. D 02/03
L
L
VCC
DUT
0
80 V
DUT
1000V
Rg
1K
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
diode clamp /
DUT
L
Driver
D
C
900V
- 5V
DUT /
DRIVER
DUT
VCC
Rg
Fig. CT.3 - S.C. SOA Circuit
www.irf.com
Fig. CT.4 - Switching Loss Circuit
11
20MT120UF
I27124 rev. D 02/03
Outline Table
Electrical Diagram
Resistance in ohms
Dimensions in millimetres
12
www.irf.com
20MT120UF
I27124 rev. D 02/03
Ordering Information Table
Device Code
20
1
MT 120
2
3
U
F
4
5
1
-
Current rating
2
-
Essential Part Number
(20 = 20A)
3
-
Voltage code
(120 = 1200V)
4
-
Speed/ Type
(U
5
-
Circuit Configuration (F
6
-
Special Option
= Ultra Fast IGBT)
= Full Bridge)
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 01/03
www.irf.com
13