IRF IRF6616

PD - 96999B
IRF6616
DirectFET™ Power MOSFET ‚
l
l
l
l
l
l
l
RoHS compliant containing no lead or bormide 
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
40V max ±20V max 3.7mΩ@ 10V 4.6mΩ@ 4.5V
Qg
tot
29nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
9.4nC
2.4nC
33nC
15nC
1.8V
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6616 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve low
combined on-state and switching loss in a package that has the footprint area of an SO-8 and only 0.7mm profile. The DirectFET package
is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET
package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6616 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6616 is ideal for secondary side synchronous rectification applications up to 100W, and can also be
used in some non-isolated synchronous buck applications where 30V devices do not provide enough voltage headroom.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) ( mΩ)
12
ID = 19A
10
8.0
T J = 125°C
6.0
4.0
T J = 25°C
2.0
0
2.0
4.0
6.0
8.0
e
e
f
10.0
VGS, Gate-to-Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
40
±20
19
15
106
150
36
15
V
A
mJ
A
6
ID= 15A
5
4
VDS = 32V
VDS= 20V
3
2
1
0
0
10
20
30
40
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.32mH, RG = 25Ω, IAS =15A.
1
11/16/05
IRF6616
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
BVDSS
Drain-to-Source Breakdown Voltage
40
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
37
–––
Static Drain-to-Source On-Resistance
–––
3.7
5.0
–––
4.6
6.2
VGS = 0V, ID = 250µA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 19A c
VGS = 4.5V, ID = 15A c
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.25
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-5.5
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
IGSS
gfs
Qg
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
75
–––
–––
Conditions
Units
VDS = VGS, ID = 250µA
VDS = 32V, VGS = 0V
VDS = 32V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 20V, ID = 15A
Total Gate Charge
–––
29
44
Qgs1
Pre-Vth Gate-to-Source Charge
–––
8.6
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.4
–––
Qgd
Gate-to-Drain Charge
–––
9.4
–––
ID = 15A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
8.6
–––
See Fig. 15
Qsw
–––
12
–––
Qoss
Output Charge
–––
15
–––
nC
RG
Gate Resistance
–––
1.3
–––
Ω
td(on)
Turn-On Delay Time
–––
15
–––
VDD = 16V, VGS = 4.5Vc
–––
ID = 15A
VDS = 20V
nC
VGS = 4.5V
VDS = 16V, VGS = 0V
tr
Rise Time
–––
19
td(off)
Turn-Off Delay Time
–––
21
–––
tf
Fall Time
–––
4.4
–––
Ciss
Input Capacitance
–––
3765
–––
Coss
Output Capacitance
–––
560
–––
Crss
Reverse Transfer Capacitance
–––
285
–––
Min.
Typ.
Max.
–––
–––
110
–––
–––
150
integral reverse
ns
Clamped Inductive Load
pF
VDS = 20V
VGS = 0V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
Units
Conditions
MOSFET symbol
A
showing the
VSD
Diode Forward Voltage
–––
0.8
1.0
V
p-n junction diode.
TJ = 25°C, IS = 15A, VGS = 0V c
trr
Reverse Recovery Time
–––
15
23
ns
TJ = 25°C, IF = 15A
Qrr
Reverse Recovery Charge
–––
33
50
nC
di/dt = 500A/µs c
(Body Diode)d
Notes:
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
‚ Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6616
Absolute Maximum Ratings
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
c
c
f
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
cg
dg
eg
fg
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
c
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
W/°C
Thermal Response ( Z thJA )
100
D = 0.50
0.20
0.10
0.05
10
1
0.02
0.01
τJ
0.1
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τA
τ2
τ1
τ3
τ2
τ3
τ4
τ4
τA
0.000322
8.7256
0.164798
21.750
Ci= τi/Ri
Ci i/Ri
2.25760
13.251
0.01
τi (sec)
1.2801
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
 Surface mounted on 1 in. square Cu board, steady state.
‚ Used double sided cooling , mounting pad.
ƒ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
www.irf.com

„ TC measured with thermocouple incontact with top (Drain) of part.
… Rθ is measured at TJ of approximately 90°C.
ƒ Mounted to a PCB with
small clip heatsink (still air)
ƒ Mounted on minimum
footprint full size board with
metalized back and with
small clip heatsink (still air)
3
IRF6616
1000
1000
100
BOTTOM
10
2.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
1
100
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
2.5V
10
≤ 60µs PULSE WIDTH
Tj = 150°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
2.0
1000
100
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
ID = 15A
T J = 150°C
T J = 25°C
T J = -40°C
10
1.0
VDS = 10V
≤ 60µs PULSE WIDTH
V GS = 10V
1.5
V GS = 4.5V
1.0
0.1
1.5
2.0
2.5
3.0
3.5
0.5
4.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
10
Typical RDS(on) ( mΩ)
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
8
6
4
Crss
2
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
20 40 60 80 100 120 140 160
0
20
40
60
80
100 120 140 160
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6616
1000
100.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.00
100
T J = 150°C
T J = 25°C
T J = -40°C
10.00
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1.00
VGS = 0V
0.10
10
100µsec
1msec
10msec
1
T A = 25°C
Tj = 150°C
Single Pulse
0.1
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
1
100
1000
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
120
Typical VGS(th) Gate threshold Voltage (V)
2.5
100
ID, Drain Current (A)
10
VDS , Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
80
60
40
20
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Junction Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS, Single Pulse Avalanche Energy (mJ)
200
I D
3.7A
4.3A
BOTTOM 15A
TOP
160
120
80
40
0
25
50
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6616
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
VRGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6616
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode
VDD
Forward Drop
Inductor Curent
Current
Inductor
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This
includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6616
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.72
E
0.68
0.72
F
0.68
1.42
G
1.38
0.84
H
0.80
0.42
J
0.38
K
0.88 1.01
2.41
L
2.28
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.201
0.152
0.156
0.014
0.018
0.027
0.028
0.027
0.028
0.054
0.056
0.032
0.033
0.015
0.017
0.035
0.039
0.090
0.095
0.023
0.028
0.001
0.003
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6616
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6616). For 1000 parts on 7" reel,
order IRF6616TR1)
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
MIN
MAX
12.992
6.9
N.C
N.C
177.77 N.C
0.795
0.75
N.C
N.C
19.06
N.C
0.504
0.53
0.50
0.520
13.5
12.8
0.059
0.059
1.5
N.C
N.C
N.C
3.937
2.31
58.72
N.C
N.C
N.C
N.C
N.C
N.C
0.53
0.724
13.50
0.488
0.47
11.9
N.C
0.567
12.01
0.469
0.47
11.9
N.C
0.606
12.01
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/05
www.irf.com
9