PD - 96999B IRF6616 DirectFET Power MOSFET l l l l l l l RoHS compliant containing no lead or bormide Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 40V max ±20V max 3.7mΩ@ 10V 4.6mΩ@ 4.5V Qg tot 29nC Qgd Qgs2 Qrr Qoss Vgs(th) 9.4nC 2.4nC 33nC 15nC 1.8V DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6616 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve low combined on-state and switching loss in a package that has the footprint area of an SO-8 and only 0.7mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6616 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6616 is ideal for secondary side synchronous rectification applications up to 100W, and can also be used in some non-isolated synchronous buck applications where 30V devices do not provide enough voltage headroom. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) ( mΩ) 12 ID = 19A 10 8.0 T J = 125°C 6.0 4.0 T J = 25°C 2.0 0 2.0 4.0 6.0 8.0 e e f 10.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage VGS, Gate-to-Source Voltage (V) VDS Max. Units 40 ±20 19 15 106 150 36 15 V A mJ A 6 ID= 15A 5 4 VDS = 32V VDS= 20V 3 2 1 0 0 10 20 30 40 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.32mH, RG = 25Ω, IAS =15A. 1 11/16/05 IRF6616 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. BVDSS Drain-to-Source Breakdown Voltage 40 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 37 ––– Static Drain-to-Source On-Resistance ––– 3.7 5.0 ––– 4.6 6.2 VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 19A c VGS = 4.5V, ID = 15A c VGS(th) Gate Threshold Voltage 1.35 1.8 2.25 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -5.5 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 75 ––– ––– Conditions Units VDS = VGS, ID = 250µA VDS = 32V, VGS = 0V VDS = 32V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 20V, ID = 15A Total Gate Charge ––– 29 44 Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.6 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 2.4 ––– Qgd Gate-to-Drain Charge ––– 9.4 ––– ID = 15A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 8.6 ––– See Fig. 15 Qsw ––– 12 ––– Qoss Output Charge ––– 15 ––– nC RG Gate Resistance ––– 1.3 ––– Ω td(on) Turn-On Delay Time ––– 15 ––– VDD = 16V, VGS = 4.5Vc ––– ID = 15A VDS = 20V nC VGS = 4.5V VDS = 16V, VGS = 0V tr Rise Time ––– 19 td(off) Turn-Off Delay Time ––– 21 ––– tf Fall Time ––– 4.4 ––– Ciss Input Capacitance ––– 3765 ––– Coss Output Capacitance ––– 560 ––– Crss Reverse Transfer Capacitance ––– 285 ––– Min. Typ. Max. ––– ––– 110 ––– ––– 150 integral reverse ns Clamped Inductive Load pF VDS = 20V VGS = 0V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Units Conditions MOSFET symbol A showing the VSD Diode Forward Voltage ––– 0.8 1.0 V p-n junction diode. TJ = 25°C, IS = 15A, VGS = 0V c trr Reverse Recovery Time ––– 15 23 ns TJ = 25°C, IF = 15A Qrr Reverse Recovery Charge ––– 33 50 nC di/dt = 500A/µs c (Body Diode)d Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6616 Absolute Maximum Ratings Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter c c f Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter cg dg eg fg RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor c Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C Thermal Response ( Z thJA ) 100 D = 0.50 0.20 0.10 0.05 10 1 0.02 0.01 τJ 0.1 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τA τ2 τ1 τ3 τ2 τ3 τ4 τ4 τA 0.000322 8.7256 0.164798 21.750 Ci= τi/Ri Ci i/Ri 2.25760 13.251 0.01 τi (sec) 1.2801 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6616 1000 1000 100 BOTTOM 10 2.5V ≤ 60µs PULSE WIDTH Tj = 25°C TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.8V 2.5V 1 100 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.8V 2.5V 2.5V 10 ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 2.0 1000 100 Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) ID = 15A T J = 150°C T J = 25°C T J = -40°C 10 1.0 VDS = 10V ≤ 60µs PULSE WIDTH V GS = 10V 1.5 V GS = 4.5V 1.0 0.1 1.5 2.0 2.5 3.0 3.5 0.5 4.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C 10 Typical RDS(on) ( mΩ) C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 8 6 4 Crss 2 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6616 1000 100.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.00 100 T J = 150°C T J = 25°C T J = -40°C 10.00 OPERATION IN THIS AREA LIMITED BY R DS (on) 1.00 VGS = 0V 0.10 10 100µsec 1msec 10msec 1 T A = 25°C Tj = 150°C Single Pulse 0.1 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1 100 1000 Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 120 Typical VGS(th) Gate threshold Voltage (V) 2.5 100 ID, Drain Current (A) 10 VDS , Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 80 60 40 20 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Junction Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS, Single Pulse Avalanche Energy (mJ) 200 I D 3.7A 4.3A BOTTOM 15A TOP 160 120 80 40 0 25 50 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6616 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T VRGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6616 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Curent Current Inductor - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6616 DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.72 E 0.68 0.72 F 0.68 1.42 G 1.38 0.84 H 0.80 0.42 J 0.38 K 0.88 1.01 2.41 L 2.28 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6616 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6616). For 1000 parts on 7" reel, order IRF6616TR1) STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC MIN MIN MAX MAX MIN MAX 12.992 6.9 N.C N.C 177.77 N.C 0.795 0.75 N.C N.C 19.06 N.C 0.504 0.53 0.50 0.520 13.5 12.8 0.059 0.059 1.5 N.C N.C N.C 3.937 2.31 58.72 N.C N.C N.C N.C N.C N.C 0.53 0.724 13.50 0.488 0.47 11.9 N.C 0.567 12.01 0.469 0.47 11.9 N.C 0.606 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/05 www.irf.com 9