PD - 95842 IRF6612/IRF6612TR1 HEXFET® Power MOSFET l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Switching Losses l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques VDSS RDS(on) max Qg(typ.) 30V 3.3mΩ@VGS = 10V 4.4mΩ@VGS = 4.5V 30nC MX DirectFET ISOMETRIC Applicable DirectFET Package/Layout Pad (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6612 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6612 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6612 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity to minimize losses in the synchronous FET socke t. Absolute Maximum Ratings Parameter VDS TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C g g c Max. Units 30 ±20 136 24 19 190 2.8 1.8 89 0.022 -40 to + 150 V A W W/°C °C Thermal Resistance Parameter fj gj hj ij Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Notes through are on page 10 www.irf.com 1 02/02/04 IRF6612/IRF6612TR1 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 24 2.5 ––– 3.3 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 24A VGS(th) Gate Threshold Voltage ––– 1.35 3.4 ––– 4.4 2.25 VGS = 4.5V, ID = 19A VDS = VGS, ID = 250µA ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -5.6 ––– ––– 1.0 IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– 100 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 96 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 30 8.5 45 ––– Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 2.9 10 ––– ––– Qgodr Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 8.6 13 ––– ––– Qoss td(on) Output Charge Turn-On Delay Time ––– ––– 18 15 ––– ––– gfs Qg Qgs1 Qgs2 Qgd tr td(off) Rise Time Turn-Off Delay Time ––– ––– 52 21 ––– ––– tf Ciss Fall Time Input Capacitance ––– ––– 4.8 3970 ––– ––– Coss Crss Output Capacitance Reverse Transfer Capacitance ––– ––– 780 360 ––– ––– V e e V mV/°C µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V S VGS = -20V VDS = 15V, ID = 19A VDS = 15V nC VGS = 4.5V ID = 19A nC VDS = 16V, VGS = 0V VDD = 16V, VGS = 4.5V e ID = 19A ns Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Avalanche Characteristics Parameter EAS IAR Single Pulse Avalanche Energy Avalanche Current c d Typ. Max. Units ––– ––– 37 19 mJ A Diode Characteristics Parameter IS Min. Typ. Max. Units Continuous Source Current (Body Diode) ––– ISM Pulsed Source Current (Body Diode) ––– ––– 190 VSD trr Diode Forward Voltage Reverse Recovery Time ––– ––– ––– 19 1.0 29 V ns Qrr Reverse Recovery Charge ––– 8.1 12 nC 2 c ––– 24 A Conditions MOSFET symbol showing the D integral reverse p-n junction diode. G TJ = 25°C, IS = 19A, VGS = 0V S e TJ = 25°C, IF = 19A di/dt = 100A/µs e www.irf.com IRF6612/IRF6612TR1 1000 10000 VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 1000 BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 100 10 2.7V BOTTOM 2.7V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 0.1 10 Fig 1. Typical Output Characteristics 10 Fig 2. Typical Output Characteristics 1000 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) VDS = 10V ≤60µs PULSE WIDTH 100 10 T J = 25°C TJ = 150°C 1 0.1 ID = 25A VGS = 10V 1.0 0.5 0 1 2 3 4 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF6612/IRF6612TR1 100000 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED ID= 19A VGS, Gate-to-Source Voltage (V) C rss = C gd C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Crss VDS= 24V VDS= 15V 5.0 4.0 3.0 2.0 1.0 0.0 100 1 10 100 0 10 20 30 40 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 1000.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.00 T J = 150°C T J = 25°C 10.00 100µsec 10 1msec 1 10msec T A = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 1.00 0.4 0.5 0.6 0.7 0.8 0.9 1.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF6612/IRF6612TR1 140 VGS(th) Gate threshold Voltage (V) 2.5 ID, Drain Current (A) 120 100 80 60 40 20 2.0 ID = 250µA 1.5 1.0 0.5 0.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 τi (sec) 1.2801 0.000322 8.7256 0.164798 21.750 2.25760 13.251 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 10 150 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRF6612/IRF6612TR1 ID = 24A 9 8 7 6 T J = 125°C 5 4 3 T J = 25°C 2 1 0 ID TOP 5.3A 6.2A BOTTOM 19A 125 100 75 50 25 0 2 3 4 5 6 7 8 9 10 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current Current Regulator Same Type as D.U.T. V(BR)DSS tp 15V 50KΩ 12V .2µF .3µF DRIVER L VDS D.U.T. D.U.T RG + - VDD IAS 20V VGS tp A 0.01Ω + V - DS VGS I AS 3mA IG Fig 14. Unclamped Inductive Test Circuit and Waveform ID Current Sampling Resistors Fig 15. Gate Charge Test Circuit LD VDS VDS + 90% V DD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 16. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17. Switching Time Waveforms www.irf.com IRF6612/IRF6612TR1 D.U.T Driver Gate Drive + + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRF6612/IRF6612TR1 DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm 8 METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.72 E 0.68 0.72 F 0.68 1.42 G 1.38 0.84 H 0.80 0.42 J 0.38 K 0.88 1.01 2.41 L 2.28 0.70 M 0.59 0.08 N 0.03 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.023 0.001 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.028 0.003 www.irf.com IRF6612/IRF6612TR1 DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) METRIC METRIC IMPERIAL IMPERIAL MIN MIN MAX MIN MAX MIN CODE MAX MAX 12.992 A 6.9 N.C 177.77 N.C N.C 330.0 N.C 0.795 B 0.75 19.06 N.C 20.2 N.C N.C N.C 0.504 C 0.53 0.50 13.5 0.520 12.8 12.8 13.2 0.059 D 0.059 1.5 N.C 1.5 N.C N.C N.C 3.937 E 2.31 58.72 N.C 100.0 N.C N.C N.C N.C F N.C N.C 0.724 N.C 0.53 13.50 18.4 G 0.488 0.47 11.9 0.567 12.4 N.C 12.01 14.4 H 0.469 0.47 11.9 0.606 11.9 12.01 15.4 N.C www.irf.com 9 IRF6612/IRF6612TR1 DirectFET Part Marking Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.20mH, RG = 25Ω, IAS = 19A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IRs Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/04 10 www.irf.com