IRF IRF6612TR1

PD - 95842
IRF6612/IRF6612TR1
HEXFET® Power MOSFET
l
Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l Low Switching Losses
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount
Techniques
VDSS
RDS(on) max
Qg(typ.)
30V
3.3mΩ@VGS = 10V
4.4mΩ@VGS = 4.5V
30nC
MX
DirectFET™ ISOMETRIC
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6612 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6612 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6612 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity to minimize losses in the synchronous FET socke t.
Absolute Maximum Ratings
Parameter
VDS
TJ
TSTG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
g
g
c
Max.
Units
30
±20
136
24
19
190
2.8
1.8
89
0.022
-40 to + 150
V
A
W
W/°C
°C
Thermal Resistance
Parameter
fj
gj
hj
ij
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Notes  through ˆ are on page 10
www.irf.com
1
02/02/04
IRF6612/IRF6612TR1
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
24
2.5
–––
3.3
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 24A
VGS(th)
Gate Threshold Voltage
–––
1.35
3.4
–––
4.4
2.25
VGS = 4.5V, ID = 19A
VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-5.6
–––
–––
1.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
100
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
96
–––
–––
-100
–––
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
30
8.5
45
–––
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
2.9
10
–––
–––
Qgodr
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
8.6
13
–––
–––
Qoss
td(on)
Output Charge
Turn-On Delay Time
–––
–––
18
15
–––
–––
gfs
Qg
Qgs1
Qgs2
Qgd
tr
td(off)
Rise Time
Turn-Off Delay Time
–––
–––
52
21
–––
–––
tf
Ciss
Fall Time
Input Capacitance
–––
–––
4.8
3970
–––
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
780
360
–––
–––
V
e
e
V
mV/°C
µA VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA VGS = 20V
S
VGS = -20V
VDS = 15V, ID = 19A
VDS = 15V
nC
VGS = 4.5V
ID = 19A
nC
VDS = 16V, VGS = 0V
VDD = 16V, VGS = 4.5V
e
ID = 19A
ns
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
EAS
IAR
Single Pulse Avalanche Energy
Avalanche Current
c
d
Typ.
Max.
Units
–––
–––
37
19
mJ
A
Diode Characteristics
Parameter
IS
Min. Typ. Max. Units
Continuous Source Current
(Body Diode)
–––
ISM
Pulsed Source Current
(Body Diode)
–––
–––
190
VSD
trr
Diode Forward Voltage
Reverse Recovery Time
–––
–––
–––
19
1.0
29
V
ns
Qrr
Reverse Recovery Charge
–––
8.1
12
nC
2
c
–––
24
A
Conditions
MOSFET symbol
showing the
D
integral reverse
p-n junction diode.
G
TJ = 25°C, IS = 19A, VGS = 0V
S
e
TJ = 25°C, IF = 19A
di/dt = 100A/µs
e
www.irf.com
IRF6612/IRF6612TR1
1000
10000
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
1000
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
100
10
2.7V
BOTTOM
2.7V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
0.1
10
Fig 1. Typical Output Characteristics
10
Fig 2. Typical Output Characteristics
1000
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
VDS = 10V
≤60µs PULSE WIDTH
100
10
T J = 25°C
TJ = 150°C
1
0.1
ID = 25A
VGS = 10V
1.0
0.5
0
1
2
3
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF6612/IRF6612TR1
100000
6.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
ID= 19A
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
VDS= 24V
VDS= 15V
5.0
4.0
3.0
2.0
1.0
0.0
100
1
10
100
0
10
20
30
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
1000.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.00
T J = 150°C
T J = 25°C
10.00
100µsec
10
1msec
1
10msec
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
1.00
0.4
0.5
0.6
0.7
0.8
0.9
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.1
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF6612/IRF6612TR1
140
VGS(th) Gate threshold Voltage (V)
2.5
ID, Drain Current (A)
120
100
80
60
40
20
2.0
ID = 250µA
1.5
1.0
0.5
0.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100 125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τi (sec)
1.2801
0.000322
8.7256
0.164798
21.750
2.25760
13.251
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
10
150
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF6612/IRF6612TR1
ID = 24A
9
8
7
6
T J = 125°C
5
4
3
T J = 25°C
2
1
0
ID
TOP
5.3A
6.2A
BOTTOM 19A
125
100
75
50
25
0
2
3
4
5
6
7
8
9
10
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Current Regulator
Same Type as D.U.T.
V(BR)DSS
tp
15V
50KΩ
12V
.2µF
.3µF
DRIVER
L
VDS
D.U.T.
D.U.T
RG
+
- VDD
IAS
20V
VGS
tp
A
0.01Ω
+
V
- DS
VGS
I AS
3mA
IG
Fig 14. Unclamped Inductive Test Circuit
and Waveform
ID
Current Sampling Resistors
Fig 15. Gate Charge Test Circuit
LD
VDS
VDS
+
90%
V DD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 16. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17. Switching Time Waveforms
www.irf.com
IRF6612/IRF6612TR1
D.U.T
Driver Gate Drive
+
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
www.irf.com
7
IRF6612/IRF6612TR1
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
Note: Controlling dimensions
are in mm
8
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.72
E
0.68
0.72
F
0.68
1.42
G
1.38
0.84
H
0.80
0.42
J
0.38
K
0.88 1.01
2.41
L
2.28
0.70
M
0.59
0.08
N
0.03
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.023
0.001
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.028
0.003
www.irf.com
IRF6612/IRF6612TR1
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,
order IRF6618TR1
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
METRIC
METRIC
IMPERIAL
IMPERIAL
MIN
MIN
MAX
MIN
MAX
MIN
CODE
MAX
MAX
12.992
A
6.9
N.C
177.77 N.C
N.C
330.0
N.C
0.795
B
0.75
19.06
N.C
20.2
N.C
N.C
N.C
0.504
C
0.53
0.50
13.5
0.520
12.8
12.8
13.2
0.059
D
0.059
1.5
N.C
1.5
N.C
N.C
N.C
3.937
E
2.31
58.72
N.C
100.0
N.C
N.C
N.C
N.C
F
N.C
N.C
0.724
N.C
0.53
13.50
18.4
G
0.488
0.47
11.9
0.567
12.4
N.C
12.01
14.4
H
0.469
0.47
11.9
0.606
11.9
12.01
15.4
N.C
www.irf.com
9
IRF6612/IRF6612TR1
DirectFET™ Part Marking
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.20mH,
RG = 25Ω, IAS = 19A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
… Used double sided cooling , mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/04
10
www.irf.com