PD - 97215 IRF6612PbF IRF661TRPbF DirectFET™ Power MOSFET Typical values (unless otherwise specified) RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques VDSS VGS SX ST MQ RDS(on) 30V max ±20V max 2.5mΩ@ 10V 3.4mΩ@ 4.5V Qg tot 30nC Qgd Qgs2 Qrr Qoss Vgs(th) 10nC 2.9nC 8.1nC 18nC 1.8V DirectFET™ ISOMETRIC MX Applicable DirectFET Package/Layout Pad (see p.8,9 for details) SQ RDS(on) MX MT Description The IRF6612PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6612PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/ high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6612PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets. Absolute Maximum Ratings Parameter VDS ID = 24A T J = 125°C T J = 25°C 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com VGS, Gate-to-Source Voltage (V) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Typical RDS(on) (mΩ) VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM EAS IAR 10 9 8 7 6 5 4 3 2 1 0 2 Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Max. Units 30 ±20 136 24 19 190 37 19 V A mJ A 6.0 ID = 19A 5.0 VDS = 24V VDS = 15V 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 QG Total Gate Charge (nC) Fig 2. Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.20mH, RG = 25Ω, IAS = 19A. 1 05/29/06 IRF6612PbF Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage Parameter 30 ––– ––– V ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 24 ––– Static Drain-to-Source On-Resistance ––– 2.5 3.3 ––– 3.4 4.4 VGS(th) Gate Threshold Voltage 1.35 1.8 2.25 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -5.6 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 100 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 96 ––– ––– Total Gate Charge ––– 30 45 Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 2.9 ––– Qgd Gate-to-Drain Charge ––– 10 ––– ID = 19A Qgodr ––– 8.6 ––– See Fig. 14 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 13 ––– Qoss Output Charge ––– 18 ––– td(on) Turn-On Delay Time ––– 15 ––– VDD = 16V, VGS = 4.5V ID = 19A IGSS gfs Qg tr Rise Time ––– 52 ––– td(off) Turn-Off Delay Time ––– 21 ––– tf Fall Time ––– 4.8 Ciss Input Capacitance ––– 3970 ––– Coss Output Capacitance ––– 780 ––– Crss Reverse Transfer Capacitance ––– 360 ––– Min. Typ. Max. ––– ––– 110 ––– ––– 190 Conditions VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 24A mΩ VGS = 4.5V, ID = 19A VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 19A nC VGS = 4.5V VDS = 15V nC ns VDS = 16V, VGS = 0V Clamped Inductive Load See Fig. 15 & 16 VGS = 0V ––– pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Units Conditions MOSFET symbol A D showing the integral reverse G p-n junction diode. (Body Diode) S VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 19A, VGS = 0V trr Reverse Recovery Time ––– 19 29 ns Qrr Reverse Recovery Charge ––– 8.1 12 nC TJ = 25°C, IF = 19A di/dt = 100A/µs See Fig. 17 Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6612PbF Absolute Maximum Ratings 2.8 1.8 89 270 -40 to + 150 Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG W °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 τJ τ1 R2 R2 R3 R3 τA τ2 τ1 τ3 τ2 τ3 τ4 τ4 τi (sec) Ri (°C/W) R4 R4 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 τA 1.2801 0.000322 8.7256 0.164798 21.750 2.25760 13.251 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6612PbF 10000 1000 VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 1000 BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 100 10 2.7V BOTTOM 2.7V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 0.1 V DS, Drain-to-Source Voltage (V) 1 10 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) VDS = 10V ≤60µs PULSE WIDTH 100 10 T J = 25°C T J = 150°C 1 0.1 ID = 25A VGS = 10V 1.0 0.5 0 1 2 3 4 5 0 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd C, Capacitance(pF) ID, Drain-to-Source Current (Α) Tj = 150°C 1 10000 Ciss Coss 1000 Crss 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 www.irf.com IRF6612PbF 1000 1000.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.00 T J = 150°C T J = 25°C 10.00 VGS = 0V 1.00 0.4 0.5 0.6 0.7 0.8 0.9 1.0 100µsec 10 1msec 1 0.1 0 1.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 140 VGS(th) Gate threshold Voltage (V) 2.5 120 ID, Drain Current (A) 10msec T A = 25°C Tj = 150°C Single Pulse 100 80 60 40 20 2.0 ID = 250µA 1.5 1.0 0.5 0.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Threshold Voltage vs. Temperature Fig 11. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 150 ID 5.3A 6.2A BOTTOM 19A TOP 125 100 75 50 25 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6612PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 14a. Gate Charge Test Circuit Qgd Qgodr Fig 14b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 15b. Unclamped Inductive Waveforms Fig 15a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 16a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms www.irf.com IRF6612PbF D.U.T Driver Gate Drive + - - - RG • • • • P.W. Period * D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6612PbF DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.35 6.25 B 4.80 5.05 C 3.95 3.85 D 0.45 0.35 E 0.72 0.68 F 0.72 0.68 G 1.42 1.38 H 0.84 0.80 J 0.42 0.38 K 0.88 1.01 L 2.41 2.28 M 0.616 0.676 R 0.020 0.080 P 0.17 0.08 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET™ Part Marking 8 www.irf.com IRF6612PbF DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6612TRPBF). For 1000 parts on 7" reel, order IRF6612TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MIN MAX MAX 12.992 177.77 N.C N.C 0.795 19.06 N.C N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 7.90 0.319 8.10 0.154 0.161 3.90 4.10 0.469 11.90 0.484 12.30 0.215 5.45 0.219 5.55 0.201 0.209 5.10 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/06 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/