IRF IRF6612TRPBF

PD - 97215
IRF6612PbF
IRF661TRPbF
DirectFET™ Power MOSFET
Typical values (unless otherwise specified)
RoHs Compliant
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible
Compatible with existing Surface Mount Techniques
VDSS
VGS
SX
ST
MQ
RDS(on)
30V max ±20V max 2.5mΩ@ 10V 3.4mΩ@ 4.5V
Qg
tot
30nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
10nC
2.9nC
8.1nC
18nC
1.8V
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)
SQ
RDS(on)
MX
MT
Description
The IRF6612PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,
improving previous best thermal resistance by 80%.
The IRF6612PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package
inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/
high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The
IRF6612PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
VDS
ID = 24A
T J = 125°C
T J = 25°C
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
VGS, Gate-to-Source Voltage (V)
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Typical RDS(on) (mΩ)
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
EAS
IAR
10
9
8
7
6
5
4
3
2
1
0
2
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Max.
Units
30
±20
136
24
19
190
37
19
V
A
mJ
A
6.0
ID = 19A
5.0
VDS = 24V
VDS = 15V
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
QG Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.20mH, RG = 25Ω, IAS = 19A.
1
05/29/06
IRF6612PbF
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
BVDSS
Drain-to-Source Breakdown Voltage
Parameter
30
–––
–––
V
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
24
–––
Static Drain-to-Source On-Resistance
–––
2.5
3.3
–––
3.4
4.4
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.25
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-5.6
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
100
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
96
–––
–––
Total Gate Charge
–––
30
45
Qgs1
Pre-Vth Gate-to-Source Charge
–––
8.5
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.9
–––
Qgd
Gate-to-Drain Charge
–––
10
–––
ID = 19A
Qgodr
–––
8.6
–––
See Fig. 14
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
13
–––
Qoss
Output Charge
–––
18
–––
td(on)
Turn-On Delay Time
–––
15
–––
VDD = 16V, VGS = 4.5V
ID = 19A
IGSS
gfs
Qg
tr
Rise Time
–––
52
–––
td(off)
Turn-Off Delay Time
–––
21
–––
tf
Fall Time
–––
4.8
Ciss
Input Capacitance
–––
3970
–––
Coss
Output Capacitance
–––
780
–––
Crss
Reverse Transfer Capacitance
–––
360
–––
Min.
Typ.
Max.
–––
–––
110
–––
–––
190
Conditions
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 24A
mΩ
VGS = 4.5V, ID = 19A
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 19A
nC
VGS = 4.5V
VDS = 15V
nC
ns
VDS = 16V, VGS = 0V
Clamped Inductive Load
See Fig. 15 & 16
VGS = 0V
–––
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
Units
Conditions
MOSFET symbol
A
D
showing the
integral reverse
G
p-n junction diode.
(Body Diode)
S
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 19A, VGS = 0V
trr
Reverse Recovery Time
–––
19
29
ns
Qrr
Reverse Recovery Charge
–––
8.1
12
nC
TJ = 25°C, IF = 19A
di/dt = 100A/µs
See Fig. 17
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6612PbF
Absolute Maximum Ratings
2.8
1.8
89
270
-40 to + 150
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
W
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ3
τ2
τ3
τ4
τ4
τi (sec)
Ri (°C/W)
R4
R4
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τA
1.2801
0.000322
8.7256
0.164798
21.750
2.25760
13.251
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Surface mounted on 1 in. square Cu
(still air).
www.irf.com
Rθ is measured at TJ of approximately 90°C.
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6612PbF
10000
1000
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
1000
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
100
10
2.7V
BOTTOM
2.7V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
0.1
V DS, Drain-to-Source Voltage (V)
1
10
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1000
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
VDS = 10V
≤60µs PULSE WIDTH
100
10
T J = 25°C
T J = 150°C
1
0.1
ID = 25A
VGS = 10V
1.0
0.5
0
1
2
3
4
5
0
20
40
60
80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
C, Capacitance(pF)
ID, Drain-to-Source Current (Α)
Tj = 150°C
1
10000
Ciss
Coss
1000
Crss
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
www.irf.com
IRF6612PbF
1000
1000.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.00
T J = 150°C
T J = 25°C
10.00
VGS = 0V
1.00
0.4
0.5
0.6
0.7
0.8
0.9
1.0
100µsec
10
1msec
1
0.1
0
1.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
140
VGS(th) Gate threshold Voltage (V)
2.5
120
ID, Drain Current (A)
10msec
T A = 25°C
Tj = 150°C
Single Pulse
100
80
60
40
20
2.0
ID = 250µA
1.5
1.0
0.5
0.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Threshold Voltage vs. Temperature
Fig 11. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
150
ID
5.3A
6.2A
BOTTOM 19A
TOP
125
100
75
50
25
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6612PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 14a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 14b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 15b. Unclamped Inductive Waveforms
Fig 15a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 16a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
www.irf.com
IRF6612PbF
D.U.T
Driver Gate Drive
+
-
-
-
RG
•
•
•
•
P.W.
Period
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6612PbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
4.80 5.05
C
3.95
3.85
D
0.45
0.35
E
0.72
0.68
F
0.72
0.68
G
1.42
1.38
H
0.84
0.80
J
0.42
0.38
K
0.88 1.01
L
2.41
2.28
M
0.616 0.676
R
0.020 0.080
P
0.17
0.08
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6612PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6612TRPBF). For 1000 parts on 7"
reel, order IRF6612TR1PBF
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
12.992
177.77 N.C
N.C
0.795
19.06
N.C
N.C
0.504
13.5
0.520
12.8
0.059
1.5
N.C
N.C
3.937
58.72
N.C
N.C
N.C
N.C
0.724
13.50
0.488
11.9
0.567
12.01
0.469
11.9
0.606
12.01
(QTY 1000)
IMPERIAL
MIN
MAX
6.9
N.C
0.75
N.C
0.53
0.50
0.059
N.C
2.31
N.C
N.C
0.53
0.47
N.C
0.47
N.C
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.201
0.209
5.10
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/