PD - 96989 IRF6633 DirectFET Power MOSFET l l l l l l l l l RoHs Compliant Containing No Lead and Bromide Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for both Sync.FET and some Control FET application Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 20V max ±20V max 4.1mΩ@ 10V 7.0mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 4.0nC 1.2nC 32nC 8.8nC 1.8V tot 11nC DirectFET ISOMETRIC MP Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6633 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6633 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6633 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage 20 V VGS Gate-to-Source Voltage ±20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 16 ID @ TA = 70°C Continuous Drain Current, VGS 13 ID @ TC = 25°C Continuous Drain Current, VGS IDM Pulsed Drain Current EAS Single Pulse Avalanche Energy IAR Avalanche Current Parameter e @ 10V e @ 10V f g Typical R DS (on) (mΩ) 20 ID = 16A 15 10 TJ = 125°C 5 TJ = 25°C 0 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage 10.0 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 132 h VGS, Gate-to-Source Voltage (V) g A 59 41 mJ 13 A 12 ID= 13A 10 VDS = 16V VDS= 10V 8 6 4 2 0 0 4 8 12 16 20 24 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.51mH, RG = 25Ω, IAS = 13A. 1 6/2/05 IRF6633 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 16 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 4.1 5.6 V mΩ ––– 7.0 9.4 1.4 1.8 2.2 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.2 ––– mV/°C IDSS Drain-to-Source Leakage Current µA ––– ––– 1.0 ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– VGS = 10V, ID = 16A c VGS = 4.5V, ID = 13A c Gate Threshold Voltage ––– VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA VGS(th) IGSS Conditions Typ. Max. Units BVDSS VDS = VGS, ID = 250µA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V -100 VGS = -20V S VDS = 10V, ID = 13A gfs Forward Transconductance 35 ––– ––– Qg Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.3 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.2 ––– Qgd Gate-to-Drain Charge ––– 4.0 ––– ID = 13A Qgodr Gate Charge Overdrive ––– 2.5 ––– See Fig. 15 Qsw Switch Charge (Qgs2 + Qgd) ––– 5.2 ––– Qoss Output Charge ––– 8.8 ––– nC RG Gate Resistance ––– 1.5 ––– Ω td(on) Turn-On Delay Time ––– 9.7 ––– tr Rise Time ––– 31 ––– ID = 13A ns Clamped Inductive Load pF VDS = 10V nC VGS = 4.5V VDS = 10V, VGS = 0V VDD = 16V, VGS = 4.5Vc td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 4.3 ––– Ciss Input Capacitance ––– 1250 ––– VGS = 0V VDS = 10V Coss Output Capacitance ––– 630 ––– Crss Reverse Transfer Capacitance ––– 200 ––– ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current Min. ––– Typ. Max. Units ––– Pulsed Source Current MOSFET symbol 52 @TC=25°C (Body Diode) ISM A ––– ––– Conditions showing the integral reverse 132 p-n junction diode. (Body Diode)d TJ = 25°C, IS = 13A, VGS = 0V c VSD Diode Forward Voltage ––– 0.8 1.0 trr Reverse Recovery Time ––– 18 27 ns TJ = 25°C, IF = 13A Qrr Reverse Recovery Charge ––– 32 48 nC di/dt = 500A/µs c V Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6633 Absolute Maximum Ratings Parameter PD @TC = 25°C c Power Dissipation c Power Dissipation f TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range Max. Units 2.3 W Power Dissipation PD @TA = 25°C PD @TA = 70°C 1.5 89 270 °C -40 to + 150 Thermal Resistance Parameter cg Junction-to-Ambient dg Junction-to-Ambient eg Junction-to-Case fg RθJA Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB Typ. Max. ––– 55 12.5 ––– 20 ––– ––– 3.0 Junction-to-PCB Mounted Linear Derating Factor 1.0 c Units °C/W ––– 0.018 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 R5 R5 Ri (°C/W) τC τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 τ τi (sec) 0.6676 0.000066 1.0462 0.000896 1.5611 0.004386 29.282 0.68618 25.455 32 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6633 1000 1000 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 2.5V 100 BOTTOM 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 Typical RDS(on) (Normalized) ID = 16A ID, Drain-to-Source Current (Α) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VGS = 4.5V VGS = 10V 1.5 1.0 VDS = 10V ≤60µs PULSE WIDTH 0.1 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd TJ = 25°C Typical RDS (on) (mΩ) C, Capacitance(pF) Coss = Cds + Cgd Ciss 1000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Coss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 16 12 8 Crss 4 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6633 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 150°C TJ = 25°C 100.0 TJ = -40°C 10.0 1.0 VGS = 0V 0.4 0.6 0.8 1.0 100 100µsec 10 1msec 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 0.1 1.2 1.0 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 100.0 Fig11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 10.0 VDS , Drain-toSource Voltage (V) 40 30 20 10 2.5 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) TC , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 200 ID 5.7A 8.7A BOTTOM 13A TOP 160 120 80 40 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6633 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6633 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MP Outline (Medium Size Can, P-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. D D G D www.irf.com S G- Gate D- Drain S- Source S D 7 IRF6633 DirectFET Outline Dimension, MP Outline (Medium Size Can, P-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS NOTE: CONTROLLING DIMENSIONS ARE IN MM METRIC CODE MIN MAX A 6.25 6.35 B 5.05 4.80 3.95 C 3.85 D 0.45 0.35 E 0.62 0.58 F 0.58 0.62 G 0.79 0.75 0.57 H 0.53 J 0.63 0.67 K 1.72 1.59 L 2.87 3.04 M 0.70 0.59 N 0.08 0.03 P 0.08 0.17 IMPERIAL MAX 0.246 1.889 0.152 0.014 0.023 0.023 0.030 0.021 0.025 0.063 0.113 0.023 0.001 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.032 0.031 0.022 0.026 0.068 0.119 0.028 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6633 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6633). For 1000 parts on 7" reel, order IRF6633TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC CODE MIN MAX MIN MAX MAX 6.9 A N.C 177.77 N.C N.C B 0.75 N.C 19.06 N.C N.C C 0.53 0.50 13.5 13.2 12.8 D 0.059 N.C 1.5 N.C N.C E 2.31 N.C 58.72 N.C N.C F N.C 0.53 N.C 18.4 13.50 G 0.47 11.9 N.C 14.4 12.01 H 0.47 11.9 N.C 15.4 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/05 www.irf.com 9