IRF IRG4BC30WPBF

PD - 95173
IRG4BC30WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
• Industry-benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and construction offers
tighter parameters distribution, exceptional reliability
• Lead-Free
C
VCES = 600V
VCE(on) max. = 2.70V
G
@VGE = 15V, IC = 12A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
• Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >>300 kHz)
TO-220AB
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy S
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
23
12
92
92
± 20
180
100
42
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.50
–––
1.44
1.2
–––
80
–––
Units
°C/W
g
1
04/23/04
IRG4BC30WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
—
Emitter-to-Collector Breakdown Voltage T 18
—
Temperature Coeff. of Breakdown Voltage — 0.34
—
2.1
Collector-to-Emitter Saturation Voltage
— 2.45
— 1.95
Gate Threshold Voltage
3.0
—
Temperature Coeff. of Threshold Voltage
—
-11
Forward Transconductance U
11
16
—
—
Zero Gate Voltage Collector Current
—
—
—
—
Gate-to-Emitter Leakage Current
—
—
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1.0mA
2.7
IC = 12A
VGE = 15V
—
IC = 23A
See Fig.2, 5
V
—
IC = 12A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100 V, IC = 12A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 600V, TJ = 150°C
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
51
7.6
18
25
16
99
67
0.13
0.13
0.26
24
17
150
150
0.55
7.5
980
71
18
Max. Units
Conditions
76
IC = 12A
11
nC
VCC = 400V
See Fig.8
27
VGE = 15V
—
—
TJ = 25°C
ns
150
IC = 12A, VCC = 480V
100
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 9, 10, 13, 14
0.35
—
TJ = 150°C,
—
IC = 12A, VCC = 480V
ns
—
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 11,13, 14
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
T Pulse width ≤ 80µs; duty factor ≤ 0.1%.
U Pulse width 5.0µs, single shot.
S Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC30WPbF
40
Load Current ( A )
F o r b o th :
T ria n g u la r w a v e :
D uty c y c le: 50%
TJ = 125° C
T s ink = 90°C
G ate drive as s pec ified
30
C la mp vo lta g e :
8 0 % o f ra te d
P o w e r D i s si p a tio n = 2 1 W
S q u a re wa ve:
20
6 0 % o f ra te d
vo l ta g e
10
Id e a l d io de s
A
0
0.1
1
10
100
f, Frequenc y (k Hz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
TJ = 150 °C
10
TJ = 25 °C
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
1
V
= 50V
5µs PULSE WIDTH
CC
0.1
5.0
6.0
7.0
8.0
9.0
10.0
11.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
M a xim u m D C C o lle c to r C u rre n t (A
IRG4BC30WPbF
25
3.0
VCE , Collector-to-Emitter Voltage(V)
V GE = 15V
20
15
10
5
A
0
25
50
75
100
125
150
V
= 15V
80 us PULSE WIDTH
I C = 24 A
2.5
I C = 12 A
2.0
IC = 6 A
1.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
TC , C a s e Te m p e ra tu re (°C )
Fig. 4 - Maximum Collector Current vs. Case
Temperature
GE
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Thermal Response (Z thJC)
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30WPbF
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
1500
Cies
1000
C
oes
500
C
res
0
20
VGE , Gate-to-Emitter Voltage (V)
2000
10
12
8
4
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
0.3
0.2
0.1
0
10
20
30
40
RGR,G,Gate
GateResistance
Resistance(Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
10
20
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.4 I C = 12A
0.0
0
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
0.5
VCC = 400V
I C = 12A
16
0
1
50
23Ω
RG = Ohm
VGE = 15V
VCC = 480V
IC = 24 A
1
IC = 12 A
IC = 6 A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC30WPbF
1000
RG
TJ
VCC
VGE
23Ω
= Ohm
= 150 °C
= 480V
= 15V
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
1.5
1.0
0.5
0.0
100
S A FE O P E R A TIN G A R E A
10
1
0 .1
0
5
10
15
20
25
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGGE E= 2 0V
T J = 12 5 °C
30
1
10
100
1000
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC30WPbF
L
D .U .T.
VC *
50V
RL =
0 - 480V
1 00 0V
Q
480V
4 X IC@25°C
480µF
960V
R
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax )
* Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor
w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
D river*
D .U .T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
Q
* Driver same type
as D.U.T., VC = 480V
R
S
Q
R
9 0%
1 0%
S
VC
90 %
Fig. 14b - Switching Loss
t d (o ff)
10 %
IC 5%
Waveforms
tf
tr
t d (o n )
t=5µ s
E on
E o ff
E ts = ( Eo n +E o ff )
www.irf.com
7
IRG4BC30WPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.11 3)
2.62 (.10 3)
10.5 4 (.415 )
10.2 9 (.405 )
-B -
3.78 (.14 9)
3.54 (.13 9)
4.69 (.1 85)
4.20 (.1 65)
-A -
1 .3 2 (.052)
1 .2 2 (.048)
6.47 (.255 )
6.10 (.240 )
4
15 .24 (.60 0)
14 .84 (.58 4)
L E A D A S S IG N M E N T S
1 .15 (.045)
M IN
1
2
4 - D R A IN
14.09 ( .555 )
13.47 ( .530 )
1.40 ( .055 )
1.15 ( .045 )
4 - C O LL EC T O R
4 .06 (.16 0)
3 .55 (.14 0)
3X
3X
LE A D A S S IG N M E N T S
IG B T s, C oP A C K
1 - G A TE
1- G ATE
1 - G A T2E- D R A IN
- SO URC E 2 - C O LL EC T O R
2 - D R A3IN
3 - E M IT T E R
3 - S O U4R- CDE
R A IN
HE XFE T
3
0 .93 (.0 37 )
0 .69 (.0 27 )
0.3 6 (.0 14 )
3X
M
B
A
M
0.55 (.0 22)
0.46 (.0 18)
2.92 (.11 5)
2.64 (.10 4)
2.5 4 (.10 0)
2X
N O TE S :
1 D IM E N S IO N IN G & TO LE R A N C IN G P E R A N S I Y 14.5M , 19 82.
2 C O N TR O LLIN G D IM E N S IO N : IN C H
3 O U TLIN E C O N F O R M S T O J E D E C O U T LIN E T O -2 20A B .
4 H E A T S IN K & LE A D M E A S U R E M E N TS D O N O T IN C LU D E B U R R S .
TO-220AB Part Marking Information
E X AM P L E :
T H IS IS AN IR F 1 0 1 0
L O T COD E 17 89
AS S E M B L E D O N W W 1 9 , 1 9 9 7
I N T H E AS S E M B L Y L IN E "C "
N o te : "P " in as s em b ly lin e
po s itio n in dica te s "Le ad -F ree "
IN T E R N AT IO N A L
R E C T IF IE R
L O GO
AS S E M B L Y
L O T CO D E
P AR T N U M B E R
D AT E C O D E
Y E AR 7 = 1 9 9 7
WE E K 19
L IN E C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/04
8
www.irf.com