PD - 95173 IRG4BC30WPbF INSULATED GATE BIPOLAR TRANSISTOR Features • Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Lead-Free C VCES = 600V VCE(on) max. = 2.70V G @VGE = 15V, IC = 12A E n-channel Benefits • Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) TO-220AB Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 23 12 92 92 ± 20 180 100 42 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.50 ––– 1.44 1.2 ––– 80 ––– Units °C/W g 1 04/23/04 IRG4BC30WPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage T 18 — Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 Collector-to-Emitter Saturation Voltage — 2.45 — 1.95 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -11 Forward Transconductance U 11 16 — — Zero Gate Voltage Collector Current — — — — Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA 2.7 IC = 12A VGE = 15V — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, (See fig. 13a) T Pulse width ≤ 80µs; duty factor ≤ 0.1%. U Pulse width 5.0µs, single shot. S Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4BC30WPbF 40 Load Current ( A ) F o r b o th : T ria n g u la r w a v e : D uty c y c le: 50% TJ = 125° C T s ink = 90°C G ate drive as s pec ified 30 C la mp vo lta g e : 8 0 % o f ra te d P o w e r D i s si p a tio n = 2 1 W S q u a re wa ve: 20 6 0 % o f ra te d vo l ta g e 10 Id e a l d io de s A 0 0.1 1 10 100 f, Frequenc y (k Hz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 100 TJ = 150 °C 10 TJ = 25 °C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 °C 10 TJ = 25 °C 1 V = 50V 5µs PULSE WIDTH CC 0.1 5.0 6.0 7.0 8.0 9.0 10.0 11.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 M a xim u m D C C o lle c to r C u rre n t (A IRG4BC30WPbF 25 3.0 VCE , Collector-to-Emitter Voltage(V) V GE = 15V 20 15 10 5 A 0 25 50 75 100 125 150 V = 15V 80 us PULSE WIDTH I C = 24 A 2.5 I C = 12 A 2.0 IC = 6 A 1.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) TC , C a s e Te m p e ra tu re (°C ) Fig. 4 - Maximum Collector Current vs. Case Temperature GE Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC) 10 1 D = 0.50 0.20 PDM 0.10 0.1 0.01 0.00001 0.05 0.02 0.01 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC30WPbF VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 1500 Cies 1000 C oes 500 C res 0 20 VGE , Gate-to-Emitter Voltage (V) 2000 10 12 8 4 100 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 10 0.3 0.2 0.1 0 10 20 30 40 RGR,G,Gate GateResistance Resistance(Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 10 20 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V TJ = 25 ° C 0.4 I C = 12A 0.0 0 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 0.5 VCC = 400V I C = 12A 16 0 1 50 23Ω RG = Ohm VGE = 15V VCC = 480V IC = 24 A 1 IC = 12 A IC = 6 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC30WPbF 1000 RG TJ VCC VGE 23Ω = Ohm = 150 °C = 480V = 15V I C , C ollector-to-E m itter C urrent (A ) Total Switching Losses (mJ) 1.5 1.0 0.5 0.0 100 S A FE O P E R A TIN G A R E A 10 1 0 .1 0 5 10 15 20 25 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 VGGE E= 2 0V T J = 12 5 °C 30 1 10 100 1000 V C E , Collecto r-to-E m itter V oltage (V ) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC30WPbF L D .U .T. VC * 50V RL = 0 - 480V 1 00 0V Q 480V 4 X IC@25°C 480µF 960V R * Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L D river* D .U .T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V Q * Driver same type as D.U.T., VC = 480V R S Q R 9 0% 1 0% S VC 90 % Fig. 14b - Switching Loss t d (o ff) 10 % IC 5% Waveforms tf tr t d (o n ) t=5µ s E on E o ff E ts = ( Eo n +E o ff ) www.irf.com 7 IRG4BC30WPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.11 3) 2.62 (.10 3) 10.5 4 (.415 ) 10.2 9 (.405 ) -B - 3.78 (.14 9) 3.54 (.13 9) 4.69 (.1 85) 4.20 (.1 65) -A - 1 .3 2 (.052) 1 .2 2 (.048) 6.47 (.255 ) 6.10 (.240 ) 4 15 .24 (.60 0) 14 .84 (.58 4) L E A D A S S IG N M E N T S 1 .15 (.045) M IN 1 2 4 - D R A IN 14.09 ( .555 ) 13.47 ( .530 ) 1.40 ( .055 ) 1.15 ( .045 ) 4 - C O LL EC T O R 4 .06 (.16 0) 3 .55 (.14 0) 3X 3X LE A D A S S IG N M E N T S IG B T s, C oP A C K 1 - G A TE 1- G ATE 1 - G A T2E- D R A IN - SO URC E 2 - C O LL EC T O R 2 - D R A3IN 3 - E M IT T E R 3 - S O U4R- CDE R A IN HE XFE T 3 0 .93 (.0 37 ) 0 .69 (.0 27 ) 0.3 6 (.0 14 ) 3X M B A M 0.55 (.0 22) 0.46 (.0 18) 2.92 (.11 5) 2.64 (.10 4) 2.5 4 (.10 0) 2X N O TE S : 1 D IM E N S IO N IN G & TO LE R A N C IN G P E R A N S I Y 14.5M , 19 82. 2 C O N TR O LLIN G D IM E N S IO N : IN C H 3 O U TLIN E C O N F O R M S T O J E D E C O U T LIN E T O -2 20A B . 4 H E A T S IN K & LE A D M E A S U R E M E N TS D O N O T IN C LU D E B U R R S . TO-220AB Part Marking Information E X AM P L E : T H IS IS AN IR F 1 0 1 0 L O T COD E 17 89 AS S E M B L E D O N W W 1 9 , 1 9 9 7 I N T H E AS S E M B L Y L IN E "C " N o te : "P " in as s em b ly lin e po s itio n in dica te s "Le ad -F ree " IN T E R N AT IO N A L R E C T IF IE R L O GO AS S E M B L Y L O T CO D E P AR T N U M B E R D AT E C O D E Y E AR 7 = 1 9 9 7 WE E K 19 L IN E C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04 8 www.irf.com