IRF IRLR9343PBF

PD - 95386A
DIGITAL AUDIO MOSFET
IRLR9343PbF
IRLU9343PbF
IRLU9343-701PbF
Features
Advanced Process Technology
l Key Parameters Optimized for Class-D Audio
Amplifier Applications
l Low RDSON for Improved Efficiency
l Low Qg and Qsw for Better THD and Improved
Efficiency
l Low Qrr for Better THD and Lower EMI
l 175°C Operating Junction Temperature for
Ruggedness
l Repetitive Avalanche Capability for Robustness and
Reliability
l Multiple Package Options
l Lead-Free
l
Key Parameters
VDS
RDS(ON) typ. @ VGS = -10V
RDS(ON) typ. @ VGS = -4.5V
Qg typ.
TJ max
-55
93
150
31
175
V
m:
m:
nC
°C
D
D-Pak
IRLR9343
I-Pak
IRLU9343
I-Pak Leadform 701
IRLU9343-701
Refer to page 10 for package outline
G
S
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier
applications.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Max.
Units
Drain-to-Source Voltage
-55
V
Gate-to-Source Voltage
Continuous Drain Current, VGS @ -10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
±20
-20
A
Power Dissipation
Power Dissipation
79
39
W
0.53
-40 to + 175
W/°C
°C
–––
N
-14
-60
c
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Clamping Pressure
h
Thermal Resistance
RθJC
RθJA
RθJA
g
Parameter
Junction-to-Case
Junction-to-Ambient (PCB Mounted)
Junction-to-Ambient (free air)
g
gj
Typ.
Max.
Units
–––
–––
1.9
50
°C/W
–––
110
Notes  through ‰ are on page 10
www.irf.com
1
12/07/04
IRLR/U9343PbF & IRLU9343-701PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ. Max. Units
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Parameter
-55
–––
–––
-52
–––
–––
Static Drain-to-Source On-Resistance
–––
–––
93
150
105
170
V
VGS = 0V, ID = -250µA
mV/°C Reference to 25°C, ID = -1mA
mΩ VGS = -10V, ID = -3.4A
VGS = -4.5V, ID = -2.7A
VGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
-1.0
–––
–––
-3.7
–––
–––
VDS = VGS, ID = -250µA
V
mV/°C
Drain-to-Source Leakage Current
–––
–––
–––
–––
-2.0
-25
µA
VDS = -55V, VGS = 0V
VDS = -55V, VGS = 0V, TJ = 125°C
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
-100
100
nA
VGS = -20V
VGS = 20V
gfs
Forward Transconductance
Total Gate Charge
5.3
–––
–––
31
–––
47
S
Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
7.1
8.5
–––
–––
VDS = -25V, ID = -14A
VDS = -44V
VGS = -10V
Gate Charge Overdrive
Turn-On Delay Time
–––
–––
15
9.5
–––
–––
Rise Time
Turn-Off Delay Time
–––
–––
24
21
–––
–––
Fall Time
Input Capacitance
–––
–––
9.5
660
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
160
72
–––
–––
LD
Effective Output Capacitance
Internal Drain Inductance
–––
–––
280
4.5
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
∆VGS(th)/∆TJ
IDSS
Qg
Qgs
Qgd
Qgodr
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Conditions
e
e
ID = -14A
See Fig. 6 and 19
VDD = -28V, VGS = -10V
ns
e
ID = -14A
RG = 2.5Ω
VGS = 0V
pF
VDS = -50V
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to -44V
Between lead,
nH
6mm (0.25in.)
from package
and center of die contact
f
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy
i
Avalanche Current
Repetitive Avalanche Energy
d
Typ.
Max.
Units
–––
120
mJ
See Fig. 14, 15, 17a, 17b
i
A
mJ
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
ISM
VSD
trr
Qrr
2
Min.
Typ. Max. Units
–––
–––
-20
(Body Diode)
Pulsed Source Current
–––
–––
-60
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
–––
–––
–––
57
-1.2
86
V
ns
Reverse Recovery Charge
–––
120
180
nC
c
Conditions
MOSFET symbol
A
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = -14A, VGS = 0V
TJ = 25°C, IF = -14A
di/dt = 100A/µs
e
S
e
www.irf.com
IRLR/U9343PbF & IRLU9343-701PbF
100
100
10
BOTTOM
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
TOP
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
TOP
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
10
BOTTOM
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
100.0
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (Α)
1
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
T J = 25°C
TJ = 175°C
10.0
1.0
VDS = -25V
≤ 60µs PULSE WIDTH
0.1
0.0
5.0
10.0
15.0
ID = -14A
VGS = -10V
1.5
1.0
0.5
-60 -40 -20
-V GS, Gate-to-Source Voltage (V)
10000
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
-V GS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
Ciss
Coss
Crss
100
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
ID= -14A
16
VDS= -44V
VDS= -28V
VDS= -11V
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 19
0
10
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLR/U9343PbF & IRLU9343-701PbF
1000
-I D, Drain-to-Source Current (A)
-I SD, Reverse Drain Current (A)
100.0
T J = 175°C
10.0
T J = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
10msec
1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
2.0
10
100
1000
-VDS , Drain-toSource Voltage (V)
-VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
2.5
-VGS(th) Gate threshold Voltage (V)
20
16
-ID , Drain Current (A)
1msec
12
8
4
2.0
ID = -250µA
1.5
0
1.0
25
50
75
100
125
150
175
-75 -50 -25
T J , Junction Temperature (°C)
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
τ
Ri (°C/W)
1.162
0.7370
τi (sec)
0.000512
0.002157
Ci= τi/Ri
Ci= i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
500
600
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRLR/U9343PbF & IRLU9343-701PbF
ID = -14A
500
400
300
200
T J = 125°C
100
T J = 25°C
0
ID
-4.0A
-5.5A
BOTTOM -14A
TOP
400
300
200
100
0
4.0
6.0
8.0
10.0
25
-VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
-Avalanche Current (A)
Duty Cycle = Single Pulse
100
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
140
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = -14A
EAR , Avalanche Energy (mJ)
120
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
t av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRLR/U9343PbF & IRLU9343-701PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
InductorInductor
Curent
Current
ISD
Ripple ≤ 5%
*
Reverse Polarity of D.U.T for P-Channel
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel
HEXFET® Power MOSFETs
L
VDS
V DS
D.U.T
RG
VDD
A
IAS
-V
-20V
GS
tp
VGS
DRIVER
D.U.T.
RG
0.01Ω
RD
+
VDD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15V
Fig 17a. Unclamped Inductive Test Circuit
Fig 18a. Switching Time Test Circuit
I AS
td(on)
tr
t d(off)
tf
VGS
10%
90%
tp
VDS
V(BR)DSS
Fig 17b. Unclamped Inductive Waveforms
Fig 18b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.irf.com
IRLR/U9343PbF & IRLU9343-701PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120
WIT H ASS EMBLY
LOT CODE 1234
ASSEMBLED ON WW 16, 1999
IN T HE ASSEMBLY LINE "A"
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in as s embly line position
indicates "Lead-Free"
IRFU120
12
916A
34
ASSEMBLY
LOT CODE
DAT E CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
IRFU120
12
ASSEMBLY
LOT CODE
www.irf.com
34
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 16
A = ASSEMBLY SIT E CODE
7
IRLR/U9343PbF & IRLU9343-701PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120
WIT H AS SEMBLY
LOT CODE 5678
ASS EMBLED ON WW 19, 1999
IN THE AS SEMBLY LINE "A"
INTERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
919A
56
78
ASS EMBLY
LOT CODE
Note: "P" in as sembly line
pos ition indicates "Lead-F ree"
DAT E CODE
YEAR 9 = 1999
WEEK 19
LINE A
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRF U120
56
AS S EMBLY
LOT CODE
8
78
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 19
A = AS S EMBLY S IT E CODE
www.irf.com
IRLR/U9343PbF & IRLU9343-701PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
www.irf.com
9
IRLR/U9343PbF & IRLU9343-701PbF
I-Pak Leadform Option 701 Package Outline
‰
Dimensions are shown in millimeters (inches)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.24mH,
RG = 25Ω, IAS = -14A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ This only applies for I-Pak, LS of D-Pak is
measured between lead and center of die contact
… Rθ is measured at TJ of approximately 90°C.
† Contact factory for mounting information
‡ Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information
ˆ When D-Pak mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
‰ Refer to D-Pak package for Part Marking, Tape and Reel information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/04
10
www.irf.com