INFINEON TDA5204

Wireless Components
ASK Single Conversion Receiver 390MHz
TDA 5204 E1
Version 1.0
Specification December 2000
preliminary
Revision History
Current Version: 1.0 as of 12.01.01
Previous Version: none
Page
(in previous
Version)
Page
(in current
Version)
Subjects (major changes since last revision)
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56, FALC®-E1, FALC®-LH, IDEC®, IOM®,
IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG.
ACE™, ASM™, ASP™, POTSWIRE™, QuadFALC™, SCOUT™ are trademarks of Infineon Technologies AG.
Edition 12.00
Published by Infineon Technologies AG,
Balanstraße 73,
81541 München
© Infineon Technologies AG December 2000.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies AG is an approved CECC manufacturer.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing
material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with the express written approval of the
Infineon Technologies AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that lifesupport device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they
fail, it is reasonable to assume that the health of the user may be endangered.
TDA 5204 E1
preliminary
Product Info
Product Info
General Description
Features
The IC is a very low power consump- Package
tion single chip ASK Single Conversion Receiver for receive frequencies
between 385 and 406MHz. The
Receiver offers a high level of integration and needs only a few external
components. The device contains a
low noise amplifier (LNA), a double
balanced mixer, a fully integrated
VCO, a PLL synthesiser, a crystal
oscillator, a limiter with RSSI generator, a data filter, a data comparator
(slicer) and a peak detector. Additionally there is a power down feature to
save battery life.
Low supply current
(Is = 4.8mA typ.)
Supply voltage range 5V ±10%
Temperature range -40°C...+85°C
Power down mode with very low
390MHz band
Selectable reference frequency
Limiter with RSSI generation,
operating at 10.7MHz
2nd order low pass data filter with
supply current (50nA typ)
Fully integrated VCO and PLL
external capacitors
Data slicer with self-adjusting
Synthesiser
threshold
RF input sensitivity < –110dBm
Application
Keyless Entry Systems
Remote Control Systems
Fire Alarm Systems
Low Bitrate Communication
Systems
Ordering Information
Type
Ordering Code
Package
TDA 5204
Q67037-A1169
P-TSSOP-28-1
available on tape and reel
Wireless Components
Product Info
Specification, December 2000
1
Table of Contents
1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-i
2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1
2.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2
2.2
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2
2.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2
2.4
Possible Receive Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3
2.5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3.1
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2
3.2
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3
3.3
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
3.4
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
3.4.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
3.4.2 Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
3.4.3 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
3.4.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
3.4.5 Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.6 Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.7 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.8 Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.9 Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
4-1
4.1
LNA and Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2
4.2
Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-4
4.3
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-5
4.4
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6
4.5
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-7
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1
5.1
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-2
5.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-2
5.1.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-3
5.1.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-4
5.2
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-8
5.3
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-9
5.4
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-11
2
Product Description
Contents of this Chapter
2.1
2.2
2.3
2.4
2.5
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Possible Receive Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
TDA 5204 E1
preliminary
Product Description
2.1 Overview
The IC is a very low power consumption single chip ASK Superheterodyne
Receiver (SHR) for the frequency band 390MHz. The SHR offers a high level
of integration and needs only a few external components. The device contains
a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a
PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a data filter,
a data comparator (slicer) and a peak detector. Additionally there is a power
down feature to save battery life.
2.2 Application
Keyless Entry Systems
Remote Control Systems
Fire Alarm Systems
Low Bitrate Communication Systems
2.3 Features
Wireless Components
Low supply current (Is = 4.8mA typ.)
Supply voltage range 5V ±10%
Power down mode with very low supply current (50nA typ.)
Fully integrated VCO and PLL Synthesiser
RF input sensitivity < –110dBm
frequency band 390MHz
Selectable reference frequency
Limiter with RSSI generation, operating at 10.7MHz
2nd order low pass data filter with external capacitors
Data slicer with self-adjusting threshold
Temperature range -40°C...+85°C
2-2
Specification, December 2000
TDA 5204 E1
preliminary
Product Description
2.4 Possible Receive Ranges
385...406MHz (high-side injected)
406...428MHz (low-side injected)
781...823MHz (high-side injected)
803...844MHz (low-side injected)
2.5 Package Outlines
P_TSSOP_28.EPS
Figure 2-1
Wireless Components
P-TSSOP-28-1 package outlines
2-3
Specification, December 2000
3
Functional Description
Contents of this Chapter
3.1
3.2
3.3
3.4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
TDA 5204 E1
preliminary
Functional Description
3.1 Pin Configuration
CRST1
1
28
CRST2
VCC
2
27
PWDN
LNI
3
26
PDO
TAGC
4
25
DATA
AGND
5
24
3VOUT
LNO
6
23
THRES
VCC
7
22
FFB
MI
8
21
OPP
MIX
9
20
SLN
AGND
10
19
SLP
FSEL
11
18
LIMX
IFO
12
17
LIM
DGND
13
16
CSEL
VDD
14
15
LF
TDA5204
Pin_Configuration.wmf
Figure 3-1
Wireless Components
IC Pin Configuration
3-2
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
3.2 Pin Definition and Function
Table 3-1 Pin Definition and Function
Pin No.
Symbol
1
CRST1
Equivalent I/O-Schematic
Function
External Crystal Connector 1
4.15V
1
2
VCC
5V Supply
3
LNI
LNA Input
3
1k
4
TAGC
AGC Time Constant Control
4.3V
4uA
1k
4
1.5uA
1.7V
5
AGND
Analogue Ground Return
6
LNO
LNA Output
1k
6
7
VCC
Wireless Components
5V Supply
3-3
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
8
MI
Mixer Input
1.7V
2k
2k
8
9
9
MIX
10
AGND
Analogue Ground Return
11
FSEL
390MHz:
not applicable - has to be left
open
Complementary Mixer Input
1.2V
40k
11
12
IFO
10.7 MHz IF Mixer Output
300uA
2.2V
60
12
4.5k
13
DGND
Digital Ground Return
14
VDD
5V Supply (PLL Counter Circuitry)
15
LF
PLL Filter Access Point
(Loop Filter)
4.8V
200
15
30uA
100
30uA
2.4V
Wireless Components
3-4
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
16
CSEL
6.xx or 12.xx MHz Quartz
Selector
1.2V
80k
16
17
LIM
Limiter Input
15k
2.4V
330
17
18
LIMX
19
SLP
15k
18
Complementary Limiter Input
Data Filter Output
Data Slicer Positive Input
Peak Detector Input
10k
100
19
10k
40u
20
SLN
Data Slicer Negative Input
10k
20
21
OPP
OpAmp Noninverting Input
200
21
Wireless Components
3-5
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
22
FFB
Data Filter Feedback Pin
100k
22
23
THRES
AGC Threshold Input
10k
23
24
3VOUT
3V Reference Output
24
3V
25
DATA
Data Output
200
25
80k
Wireless Components
3-6
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
26
PDO
Peak Detector Output
200
26
27
PDWN
Power Down Input
Vs --> Power ON
GND---> Power Down
27
220k
220k
28
CRST2
External Crystal Connector 2
4.15V
28
Wireless Components
3-7
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
3.3 Functional Block Diagram
VCC
IF
Filter
3
RF
LNO
MI
6
8
MIX IFO
9
12
LIM
LIMX
FFB
OPP
SLP
SLN
17
18
22
21
19
20
LNA
RSSI
25
DATA
26
PDO
23
THRES
SLICER
TAGC 4
TDA 5204
AGC
Reference
VDD 14
24
3VOUT
UREF
: 1/2
VCO
: 128/64
DGND 13
Φ
DET
Crystal
OSC
Bandgap
Reference
Loop
Filter
2/7
VCC
5/10
AGND
11
FSEL
15
LF
16
1
CSEL
28
27
PDWN
Crystal
Function_5204.wmf
Figure 3-2
Main Block Diagram
3.4 Functional Blocks
3.4.1
Low Noise Amplifier (LNA)
The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The
gain figure is determined by the external matching networks situated ahead of
LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX
(Pins 8 and 9). The noise figure of the LNA is approximately 2dB, the current
consumption is 500µA. The gain can be reduced by approximately 18dB. The
switching point of this AGC action can be determined externally by applying a
threshold voltage at the THRES pin (Pin 23). This voltage is compared internally
with the received signal (RSSI) level generated by the limiter circuitry. In case
that the RSSI level is higher than the threshold voltage the LNA gain is reduced
and vice versa. The threshold voltage can be generated by attaching a voltage
divider between the 3VOUT pin (Pin 24) which provides a temperature stable
3V output generated from the internal bandgap voltage and the THRES pin as
described in Section 4.1. The time constant of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen
along with the appropriate threshold voltage according to the intended operat-
Wireless Components
3-8
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
ing case and interference scenario to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described in
Section 4.1.
3.4.2
Mixer
The Double Balanced Mixer downconverts the input frequency (RF) 390MHz to
the intermediate frequency (IF) at 10.7MHz with a voltage gain of approximately
21dB. A low pass filter with a corner frequency of 20MHz is built on chip in order
to suppress RF signals to appear at the IF output ( IFO pin). The IF output is
internally consisting of an emitter follower that has a source impedance of
approximately 330Ω= to facilitate interfacing the pin directly to a standard
10.7MHz ceramic filter without additional matching circuitry.
3.4.3
PLL Synthesizer
The Phase Locked Loop synthesiser consists of a VCO, an asynchronous
divider chain, a phase detector with charge pump and a loop filter and is fully
implemented on-chip. The VCO is including spiral inductors and varactor
diodes. It’s nominal centre frequency is 800MHz. The FSEL pin (Pin 11) has to
be left open. No additional components are necessary. The oscillator signal is
fed both to the synthesiser divider chain and to the downconverting mixer. The
VCO signal is divided by two before it is fed to the mixer. The loop filter is also
realised fully on-chip.
3.4.4
Crystal Oscillator
The on-chip crystal oscillator circuitry allows for utilisation of quartzes both in
the 6 and 12MHz range as the overall division ratio of the PLL can be switched
between 64 and 128 via the CSEL (Pin 16 ) pin according to the following table.
Table 3-2 CSEL Pin Operating States
CSEL
Crystal Frequency
Open
6.xx MHz
Shorted to ground
12.xx MHz
The calculation of the value of the necessary quartz load capacitance is shown
in Section 4.3, the quartz frequency calculation is expained in Section 4.4.
Wireless Components
3-9
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
3.4.5
Limiter
The Limiter is an AC coupled multistage amplifier with a cumulative gain of
approximately 80dB that has a bandpass-characteristic centred around
10.7MHz. It has an input impedance of 330 Ω=to allow for easy interfacing to a
10.7MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength
Indicator (RSSI) generator which produces a DC voltage that is directly proportional to the input signal level as can be seen in Figure 4.1. This signal is used
to demodulate the ASK receive signal in the subsequent baseband circuitry and
to turn down the LNA gain by approximately 18dB in case the input signal
strength is too strong as described in Section 3.4.1 and Section 4.1.
3.4.6
Data Filter
The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a
voltage follower and two 100kΩ= on-chip resistors. Along with two external
capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the
capacitor values is described in Section 4.2.
3.4.7
Data Slicer
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows
for a maximum receive data rate of approximately 120kBaud. The maximum
achievable data rate also depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs are accessible. The output delivers a digital
data signal (CMOS-like levels) for the detector. The self-adjusting threshold on
pin SLN (pin 20) its generated by RC-term or peak detector depending on the
baseband coding scheme. The data slicer threshold generation alternatives are
described in more detail in Section 4.5.
3.4.8
Peak Detector
The peak detector generates a DC voltage which is proportional to the peak
value of the receive data signal. An external RC network is necessary. The output can be used as an indicator for the signal strength and also as a reference
for the data slicer. The maximum output current is approx. 900µA.
Wireless Components
3 - 10
Specification, December 2000
TDA 5204 E1
preliminary
Functional Description
3.4.9
Bandgap Reference Circuitry
A Bandgap Reference Circuit provides a temperature stable reference voltage
for the device. A power down mode is available to switch off all subcircuits which
is controlled by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in this case is typically 50nA.
Table 3-3 PDWN Pin Operating States
PDWN
Operating State
Open or tied to ground
Powerdown Mode
Receiver On
Tied to Vs
Wireless Components
3 - 11
Specification, December 2000
4
Applications
Contents of this Chapter
4.1
4.2
4.3
4.4
4.5
LNA and Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . 4-2
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
TDA 5204 E1
preliminary
Applications
4.1 LNA and Automatic Gain Control (AGC)
The AGC extends the dynamic range of the receiver.
The automatic gain control in the TDA5204 is a narrow-band control loop which
compares the receive signal strength signal (RSSI, 0.8V to 2.8V) from the limiter with a fixed threshold voltage applied to pin 23 (THRES).
In the following figure the internal circuitry of the LNA automatic gain control is
shown.
R4
R5
Uthreshold
Pins:
24
23
RSSI (0.8 - 2.8V)
+3V
OTA
VCC
Iload
Gain control
voltage
RSSI > Uthreshold: Iload=4.2µA
RSSI < Uthreshold: Iload= -1.5µA
4
UC
C
LNA
Uc:< 2.6V : Gain high
Uc:> 2.6V : Gain low
Ucmax= VCC - 0.7V
Ucmin = 1.67V
LNA_autom.wmf
Figure 4-1
LNA Automatic Gain Control Circuitry
The fixed voltage on pin 23 is generated on the external voltage divider. The
comparator is a transimpedance amplifier (OTA), which creates a positive current (+4.2uA) in the case the RSSI level is larger than the threshold voltage.
Otherwise the current is -1.5uA. This leads to an asymmetric fast-attack and
slow-release behaviour and thus to fast reaction to the low gain mode and slow
reaction to the high gain mode.
This current is converted into a control voltage over an external capacitor C
attached to pin 4 (TAGC) which defines the gain of the LNA. The limits of the
control voltages for the LNA on pin4 are 1.67V for high gain mode and Vcc-0.7V
for low gain mode.
Wireless Components
4-2
Specification, January 2001
TDA 5204 E1
preliminary
Applications
LNA always
in high gain mode
3
2
RSSI Level Range
UTHRES Voltage Range
2.5
RSSI Level
1.5
1
LNA always
in low gain mode
0.5
0
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
Input Level at LNA Input [dBm]
RSSI-AGC.wmf
Figure 4-2
RSSI Level an Permissive AGC Threhold Level
The value of the capacitor defines the response time of the AGC. For a stable
control loop the capacitor value should be at least 47nF.
The AGC can be disabled by tying the THRES-pin either to GND or to VCC as
show here:
LNA high gain:
- pin 23 (THRES) shorted to VCC
LNA low gain:
- pin 23 (THRES) shorted to GND
In these cases capacitor and voltage divider are not necessary.
Wireless Components
4-3
Specification, January 2001
TDA 5204 E1
preliminary
Applications
4.2 Data Filter Design
Utilising the on-board voltage follower and the two 100kΩ on-chip resistors a
2nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as
depicted in the following figure and described in the following formulas1.
C1
Pins:
C2
22
21
R
R
100k
100k
19
Filter_Design.wmf
Figure 4-3
Data Filter Design
(1)
(2)
2⋅ Q bC 1 = -----------------------R ⋅ 2πf 3dB
b
C2 = --------------------------------4Q ⋅ R ⋅ πf 3dB
with
Q = ------ba
(3)
the quality factor of the poles
where
in case of a Bessel filter
a = 1.3617, b = 0.618
and thus
Q = 0.577
and in case of a Butterworth filter
a = 1.41, b = 1
and thus
Q = 0.71
Example: Butterworth filter with f3dB = 5kHz and R = 100kΩ:
C1 = 450pF, C2 = 225pF
1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999
Wireless Components
4-4
Specification, January 2001
TDA 5204 E1
preliminary
Applications
4.3 Quartz Load Capacitance Calculation
The value of the capacitor necessary to achieve that the quartz oscillator is
operating at the intended frequency is determined by the reactive part of the
negative resistance of the oscillator circuit as shown in Section 5.1.3 and by the
quartz specifications given by the quartz manufacturer.
CS
Pin 28
Crystal
Input
impedance
Z1-28
TDA5204
Pin 1
Quartz_load.wmf
Figure 4-4
Determination of Series Capacitance Value for the Quartz Oscillator
The quartz oscillator input impedance consists of a negative resistance and an
inductance L.
Crystal specified with load capacitance
CS =
1
1
+ (2π f
CL
)2 L
with CL the load capacitance (refer to the quartz crystal specification).
Examples with typ. values:
6.26 MHz:
CL = 12 pF
L=21uH
CS = 8.6 pF
12.52 MHz:
CL = 12 pF
L=19uH
CS = 5 pF
These values may be obtained by putting two capacitors in series to the quartz.
Wireless Components
4-5
Specification, January 2001
TDA 5204 E1
preliminary
Applications
4.4 Quartz Frequency Calculation
The quartz frequency is calculated by using the following formula:
ƒQU = (ƒRF ± 10.7MHz) / r
with
(1),
ƒRF
....
receive frequency
+/-
...
high-side / low-side injected
ƒLO
....
local oscillator (PLL) frequency (ƒRF ± 10.7)
ƒQU
....
quartz oscillator frequency
r
....
ratio of local oscillator (PLL) frequency and quartz
frequency as shown in the subsequent table.
Table 4-1
frequency range
fRF
385...406MHz
high-side
injected
X
406...428MHz
781...823MHz
low-side
injected
open
X
X
803...844MHz
open
GND
X
Table 4-2
FSEL
Pin11
GND
Table 4-3
quartz crystal
range
CSEL
Pin16
FSEL
CSEL
Ratio r
(fLO/fQU)
6.xx MHz
open
open
open
64
12.xx MHz
GND
open
GND
32
GND
open
128
GND
GND
64
Example:
fRF=390MHz
fQU=(390MHz+10.7MHz) / 64 = 6.2609375MHz
fQU=(390MHz+10.7MHz) / 32 = 12.521875MHz
Wireless Components
4-6
Specification, January 2001
TDA 5204 E1
preliminary
Applications
4.5 Data Slicer Threshold Generation
The threshold of the data slicer can be generated in two ways, depending on
the signal coding scheme used. In case of a signal coding scheme without DC
content such as Manchester coding the threshold can be generated using an
external R-C integrator as shown in the following . The cut-off frequency of the
R-C integrator has to be lower than the lowest frequency appearing in the data
signal. In order to keep distortion low, the minimum value for R is 20kΩ.
R
C
Pins:
19
data out
25
20
Uthreshold
data
filter
data slicer
Data_slice1.wmf
Figure 4-5
Data Slicer Threshold Generation with External R-C Integrator
Another possibility for threshold generation is to use the peak detector in connection with two resistors and one capacitor as shown in the following figure.
The component values are depending on the coding scheme and the protocol
used.
R
C
R
Pins:
peak detector
26
19
data out
25
20
Uthreshold
data slicer
data
filter
Data_slice2.wmf
Figure 4-6
Wireless Components
Data Slicer Threshold Generation Utilising the Peak Detector
4-7
Specification, January 2001
5
Reference
Contents of this Chapter
5.1
5.2
5.3
5.4
Electrical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Test Board Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
TDA 5204 E1
preliminary
Reference
5.1 Electrical Data
5.1.1
Absolute Maximum Ratings
WARNING
The maximum ratings may not be exceeded under any circumstances, not even
momentarily and individually, as permanent damage to the IC will result.
Table 5-1 Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 85°C
#
Parameter
Symbol
Limit Values
min
max
Unit
1
Supply Voltage
Vs
-0.3
5.5
V
2
Junction Temperature
Tj
-40
+125
°C
3
Storage Temperature
Ts
-60
+150
°C
4
Thermal Resistance
RthJA
114
K/W
5
ESD integrity, all pins
VESD
+1
kV
Wireless Components
5-2
-1
Remarks
HBM
according to
MIL STD
883D,
method
3015.7
Specification, January 2001
TDA 5204 E1
preliminary
Reference
5.1.2
Operating Range
Within the operating range the IC operates as explained in the circuit description. The AC/DC characteristic limits are not guaranteed.
Supply voltage: VCC = 4.5V .. 5.5V
Table 5-2 Operating Range, Ambient temperature TAMB= -40°C ... + 85°C
#
Parameter
Symbol
Limit Values
min
1
Supply Current
2
Unit
Test Conditions
fRF = 390MHz
L
Item
max
IS
6.4
mA
Power Down Current
IPWDN
250
nA
3
Receiver Input Level
RFin
-110
-13
dBm
4
Receive Frequency
fRF
385
406
MHz
@ source impedance 50Ω,
BER 2E-3, average power
level, Manchester encoded
datarate 4kBit, 280kHz IF
Bandwidth, with AGC
This value is guaranteed by design.
Wireless Components
5-3
Specification, January 2001
TDA 5204 E1
preliminary
Reference
5.1.3
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient temp. range. Typical characteristics are the median
of the production. The device performance parameters marked with were
measured on an Infineon evaluation board as desdribed in Section 5.2. Currents flowing into the device are denoted as positive currents and vice versa.
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V
#
Parameter
Symbol
Limit Values
min
typ
max
Unit
Test Conditions
Pin 27 (PDWN)
open or tied to 0 V
L
Item
Supply
Supply Current
1
Supply current,
standby mode
IS PDWN
50
150
nA
2
Supply current
IS
4.8
5.5
mA
LNA
Signal Input LNI (PIN 3), high gain mode
1
Average Power Level
at BER = 2E-3
(Sensitivity)
RFin
-112
2
dBm
Input impedance,
fRF = 390 MHz
S11 LNA
0.879 / -31 deg
3
Input level @ 1dB C.P.
fRF=390 MHz
P1dBLNA
-14
dBm
4
Input 3rd order intercept
point fRF = 390 MHz
IIP3LNA
-10
dBm
5
LO signal feedthrough at
antenna port
LOLNI
-119
dBm
Manchester
encoded datarate
4kBit, 280kHz IF
Bandwidth
fin = 390MHz
Signal Output LNO (PIN 6), high gain mode
1
Gain fRF = 390 MHz
S21 LNA
1.578 / 141.8deg
2
Output impedance,
fRF = 390 MHz
S22 LNA
0.8822 / -12.13deg
3
Voltage Gain Antenna to
MI fRF = 390 MHz
GAntMI
21
dB
4
Noise Figure
NFLNA
2
dB
excluding matching
network loss - see
Appendix
Signal Input LNI, low gain mode
1
Input impedance,
fRF = 390 MHz
S11 LNA
0.903 / -31.8deg
2
Input level @ 1dB C. P.
fRF = 390 MHz
P1dBLNA
-7
Wireless Components
5-4
dBm
matched input
Specification, January 2001
TDA 5204 E1
preliminary
Reference
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter
Symbol
Limit Values
min
typ
Unit
Test Conditions
L
dBm
fin = 390MHz
Item
max
Signal Input LNI, VTHRES = GND, low gain mode
3
Input 3rd order intercept
point fRF = 390 MHz
-13
IIP3LNA
Signal Output LNO, VTHRES = GND, low gain mode
1
Gain fRF = 390 MHz
S21 LNA
0.1834 / 144deg
2
Output impedance,
fRF = 390 MHz
S22 LNA
0.897 / -12.4deg
3
Voltage Gain Antenna to
MI fRF = 390 MHz
GAntMI
2
dB
Signal 3VOUT (PIN 24)
1
Output voltage
V3VOUT
2
Load current out
I3VOUT
2.9
3
3.1
V
-50
µA
Signal THRES (PIN 23)
1
Input Voltage range
VTHRES
0
VS
V
2
LNA low gain mode
VTHRES
0
0.5
V
3
LNA high gain mode
VTHRES
3.3
VS
V
4
Current in
ITHRES_in
-5
see chapter 4.1
nA
Signal TAGC (PIN 4)
1
Current out,
LNA low gain state
ITAGC_out
-2.5
-4.2
-5.5
µA
RSSI > VTHRES
2
Current in,
LNA high gain state
ITAGC_in
0.5
1.5
4
µA
RSSI < VTHRES
MIXER
Signal Input MI/MIX (PINS 8/9)
1
Input impedance,
fRF = 390 MHz
S11 MIX
0.9413 / -13.1deg
2
Input 3rd order intercept
point
IIP3MIX
-25
dBm
Signal Output IFO (PIN 12)
1
Output impedance
ZIFO
330
Ω
2
Conversion Voltage Gain
fRF=390 MHz
GMIX
+21
dB
3
Noise Figure, SSB
(~DSB NF+3dB)
NFMIX
13
dB
4
RF to IF isolation
ARF-IF
46
dB
Wireless Components
5-5
Specification, January 2001
TDA 5204 E1
preliminary
Reference
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter
Symbol
Limit Values
Unit
Test Conditions
L
min
typ
max
ZLIM
264
330
396
Ω
60
70
80
dB
dB
Item
LIMITER
Signal Input LIM/X (PINS 17/18)
1
Input Impedance
2
RSSI dynamic range
DRRSSI
3
RSSI linearity
LINRSSI
4
Operating frequency (3dB
points)
fLIM
5
10.7
23
MHz
5
RSSI Level at Data Filter
Output SLP
RSSIlow
0.4
0.8
1.2
V
Limiter_in: 10uV
6
RSSI Level at Data Filter
Output SLP
RSSIhigh
2.3
2.8
3.2
V
Limiter_in: 100mV
±1
DATA FILTER
1
Max. useable bandwidth
BWBB
100
kHz
100
kHz
FILT
SLICER
Signal Output DATA (PIN 25)
1
Max. useable bandwith
BWBB
SLIC
2
LOW output voltage
VSLIC_L
0
100
mV
3
HIGH output voltage
VSLIC_H
Vs-1.2
VS-1
Vs-0.7
V
4
Output current
ISLIC_out
-400
-800
-1100
µA
high level drive
5
Output impedance
Rout
60
80
100
kΩ
low level drive
Iload
-500
-950
-1200
µA
Ileakage
0
700
2000
nA
PEAK DETECTOR
Signal Output PDO (PIN 26)
1
Load current
2
Leakage current
Wireless Components
5-6
Specification, January 2001
TDA 5204 E1
preliminary
Reference
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter
Symbol
Limit Values
min
typ
Unit
Test Conditions
MHz
fundamental mode,
series resonance
L
Item
max
CRYSTAL OSCILLATOR
Signals CRSTL1, CRISTL 2, (PINS 1/28)
1
Operating frequency
fCRSTL
2
Negative Resistance
@ ~6MHz
Re{Z1-28}
-750
Ω
3
Negatve Resitance
@ ~12MHz
Re{Z1-28}
-450
Ω
4
Input Indutance
@ ~6MHz
Im{Z1-28}/
2π f
21
uH
5
Input Inductance
@ ~12MHz
Im{Z1-28}/
2π f
19
uH
1
14
PLL
Signal LF (PIN 15)
1
Tuning voltage relative to
Vs
VTUNE
0.5
1.05
2
V
POWER DOWN Pin
Signal PDWN (PIN 27)
1
Powerdown Mode On
PWDNON
0
0.8
V
2
Powerdown Mode Off
PWDNOff
2.8
VS
V
3
Input bias current
IPWD
4
Start-up Time until valid IF
signal is detected
TSU
19
uA
1
ms
Power On Mode
PLL DIVIDER
Signal CSEL (PIN 16)
1
fCRSTL range 6.xxMHz
VCSEL
1.4
4
V
2
fCRSTL range 12.xxMHz
VCSEL
0
0.2
V
3
Bias current CSEL
ICSEL
-5
µA
or open
CSEL tied to GND
Measured only in lab.
Wireless Components
5-7
Specification, January 2001
TDA 5204 E1
preliminary
Reference
5.2 Test Circuit
DATE: Jul.19, 1999
n Board
FILE: -10 V 2.0
TITLE: TDA5200 /-01 /-02 Evaluatio
Infineon Technologies Design Center Graz
The device performance parameters marked with in Section 5.1.3 were measured on an Infineon evaluation board. This evaluation board can be obtained
together with evaluation boards of the accompanying transmitter device
TDA51xx in an evaluation kit that may be ordered on the INFINEON RKE
Webpage www.infineon.com/rke
Test_circuit.wmf
Figure 5-1
Wireless Components
Schematic of the Evaluation Board
5-8
Specification, January 2001
TDA 5204 E1
preliminary
Reference
5.3 Test Board Layouts
Wireless Components
Figure 5-2
Top Side of the Evaluation Board (TDA5210 Testboard is the same)
Figure 5-3
Bottom Side of the Evaluation Board
5-9
Specification, January 2001
TDA 5204 E1
preliminary
Reference
Figure 5-4
Wireless Components
Component Placement on the Evaluation Board
5 - 10
Specification, January 2001
TDA 5204 E1
preliminary
Reference
5.4 Bill of Materials
The following components are necessary for evaluation of the TDA5204 at
390MHz without use of a Microchip HCS515 decoder.
Table 5-4 Bill of Materials
Ref
Value
Specification
R1
100kΩ
0805, ± 5%
R2
100kΩ
0805, ± 5%
R3
820kΩ
0805, ± 5%
R4
120kΩ
0805, ± 5%
R5
180kΩ
0805, ± 5%
R6
10kΩ
0805, ± 5%
L1
15nH
Toko, PTL2012-F15N0G
L2
10pF
C1
1.8pF
0805, COG, ± 0.1pF
C2
6.8pF
0805, COG, ± 0.1pF
C3
6.8pF
0805, COG, ± 0.1pF
C4
100pF
0805, COG, ± 5%
C5
47nF
1206, X7R, ± 10%
0805,COG, ± 2%
a
C6
12nH
C7
100pF
0805, COG, ± 5%
C8
33pF
0805, COG, ± 5%
C9
100pF
0805, COG, ± 5%
C10
10nF
0805, X7R, ± 10%
C11
10nF
0805, X7R, ± 10%
C12
220pF
0805, COG, ± 5%
C13
47nF
0805, X7R, ± 10%
C14
470pF
0805, COG, ± 5%
C15
47nF
0805, X7R, ± 10%
C16
12pF
0805, COG, ± 0.1pF
C17
12pF
0805, COG, ± 2%
Q2
(390MHz + 10.7MHz)/32
HC49/U, fundamental mode, CL = 12pF,
12.521875 MHz: Jauch Q12.521875-S11-1252-12-10/20
F1
SFE10.7MA5-A
Murata
X2, X3
142-0701-801
Johnson
Toko, PTL2012-F15N0G
b
X1, X4, S1, S5
2-pole pin connector
S4
3-pole pin connector, or not equipped
IC1
TDA 5204
Infineon
a. / b. The coil is at the place of the capacity and vice versa.
Wireless Components
5 - 11
Specification, January 2001
TDA 5204 E1
preliminary
Reference
The following components are necessary in addition to the above mentioned
ones for evaluation of the TDA5204 in conjunction with a Microchip HCS515
decoder.
Table 5-5 Bill of Materials Addendum
Ref
Value
Specification
R21
22kΩ
0805, ± 5%
R22
100kΩ
0805, ± 5%
R23
22kΩ
0805, ± 5%
R24
820kΩ
0805, ± 5%
R25
560kΩ
0805, ± 5%
C21
100nF
1206, X7R, ± 10%
C22
100nF
1206, X7R, ± 10%
IC2
HCS515
Microchip
T1
BC 847B
Infineon
D1
LS T670-JL
Infineon
Wireless Components
5 - 12
Specification, January 2001
TDA 5204 E1
preliminary
List of Figures
List of Figures
Figure 2-1
P-TSSOP-28-1 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3
Figure 3-1
IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2
Figure 3-2
Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
Figure 4-1
LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2
Figure 4-2
RSSI Level an Permissive AGC Threhold Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-3
Figure 4-3
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-4
Figure 4-4
Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . .
4-5
Figure 4-5
Data Slicer Threshold Generation with External R-C Integrator . . . . . . . . . . . . . . . . . .
4-7
Figure 4-6
Data Slicer Threshold Generation Utilising the Peak Detector . . . . . . . . . . . . . . . . . . .
4-7
Figure 5-1
Schematic of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-8
Figure 5-2
Top Side of the Evaluation Board (TDA5210 Testboard is the same) . . . . . . . . . . . . . .
5-9
Figure 5-3
Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-9
Figure 5-4
Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-10
Wireless Components
List of Figures - 1
Specification, December 2000
TDA 5204 E1
preliminary
List of Tables
List of Tables
Table 3-1
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3
Table 3-3
PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
Table 5-1
Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 85°C . . . . . . . . .
5-2
Table 5-2
Operating Range, Ambient temperature TAMB= -40°C ... + 85°C . . . . . . . . . . . . . . . . .
5-3
Table 5-3
AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . .
5-4
Table 5-4
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-11
Table 5-5
Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-12
Wireless Components
List of Tables - 1
Specification, December 2000