Components for Satellite Receiver Units DCR Sat-Frontend TUA6100B6 Gain controlled I/Q Mixer for digital QPSK Sat signals Preliminary Specification 01.2001 V219 Edition 01.2001 Published by Infineon AG , Marketing-Communication, Balanstr. 73, 81541 Munich © Infineon AG 1999. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Office, Semiconductor Group. Infineon AG iGr is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Infineon AG iGr, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Infineon AG iGr. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Ausgabe 01.2001 Herausgegeben von Infineon AG , Marketing-Kommunikation, Balanstraße 73, 81541 München © Infineon AG 1999. Alle Rechte vorbehalten. Wichtige Hinweise! Gewähr für die Freiheit von Rechten Dritter leisten wir nur für Bauelemente selbst, nicht für Anwendungen, Verfahren und für die in Bauelementen oder Baugruppen realisierten Schaltungen. Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert. Liefermöglichkeiten und technische Änderungen vorbehalten. Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an den Ihnen nächstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesellschaften im Ausland. Bauelemente können aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Auskünfte darüber bitten wir unter Angabe des betreffenden Typs ebenfalls über den Vertrieb Halbleiter einzuholen. Die Infineon AG iGr ist ein Hersteller von CECC-qualifizierten Produkten. Verpackung Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter – wenden Sie sich an Ihren für Sie zuständigen Vertrieb Halbleiter. Nach Rücksprache nehmen wir Verpackungsmaterial sortiert zurück. Die Transportkosten müssen Sie tragen. Für Verpackungsmaterial, das unsortiert an uns zurückgeliefert wird oder für das wir keine Rücknahmepflicht haben, müssen wir Ihnen die anfallenden Kosten in Rechnung stellen. Bausteine in lebenserhaltenden Geräten oder Systemen müssen ausdrücklich dafür zugelassen sein! Kritische Bauelemente1 des Bereichs Halbleiter der Infineon AG iGr dürfen nur mit ausdrücklicher schriftlicher Genehmigung des Bereichs Halbleiter der Infineon AG iGr in lebenserhaltenden Geräten oder Systemen2 eingesetzt werden. 1 Ein kritisches Bauelement ist ein in einem lebenserhaltenden Gerät oder System eingesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, daß das lebenserhaltende Gerät oder System ausfällt bzw. dessen Sicherheit oder Wirksamkeit beeinträchtigt wird. 2 Lebenserhaltende Geräte und Systeme sind (a) zur chirurgischen Einpflanzung in den menschlichen Körper gedacht, oder (b) unterstützen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, daß die Gesundheit des Anwenders gefährdet werden kann. TUA6100B6 Revision History:Current Version: 01.2001 , V219 Previous version:10.2000 , V217 -> V218 old Page new Page Subjects (major changes since last revision) cover cover copper lead frame removed cover cover Edition date cover cover Spec version 20 20 Hysteresis of Schmitt trigger inputs, new 22 22 ESD note, updated 22 22 Ambient temperature, updated 22 22 Thermal resistance P-TSSOP28 + PCB board, removed 22 22 Detailed description of the needed thermal resistance, removed 22 22 Air gap package tolerances, removed 22 22 Thermal resistance junction case, new 22 22 Detailed description of the maximum junction temperature , new 23 23 RF input (950-2150MHz) section, definition changed to symm. balanced input, referenced to test circuit 23 23 Input RF level min. value corrected, test condition changed 23 23 Input gain control range, test condition changed 23 23 Quadrature error, phase + gain, test condition added 23 23 Quadrature error, gain, value corrected 27 27 Test circuit , new 27 28 Application circuits , updated input configuration 28 29 Application circuits , updated input configuration + crystal series capacitor Previous version:12.2000 , V218 old Page new Page Subjects (major changes since last revision) cover cover Edition date cover cover Spec version 2 2 Ordering Information, packages updated 22 22 Ambient temperature note, updated 23 23 Minimum input RF level , new description 23 23 Maximum input RF level , new description 27, 28 28, 29 Application circuits , updated input configuration 41 41 Plastic Package, P-TSSOP-28-1 alloy leadframe, added Data Classification Maximum Ratings Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Characteristics The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 C and the given supply voltage. Operating Range In the operating range the functions given in the circuit description are fulfilled. For detailed technical information about "Processing Guidelines" and "Quality Assurance" for ICs, see our "Product Overview". TUA6100B6 Table of Contents 1 Page Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.11.1 8.11.2 8.11.3 8.12 8.12.1 Circuit Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Input Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Baseband Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Reference Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Crystal Oscillator Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Synthesizer Loop filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Synthesizer VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Phase Shift 0 / 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 GHz VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 GHz PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional GHz PLL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 GHz PLL programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Synthesizer VCO band switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Synthesizer PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Serial Bus Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 I2C bus mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3-wire bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Dual Modulus Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 R-Counter and A- / N-Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Phase Comparator (Frequency/Phase Detector). . . . . . . . . . . . . . . . . . . . . . . . . . 11 Charge Pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Lock Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Synthesizer PLL Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Divide ratio programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Phase detector outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chipaddress Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Subaddress Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bus Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Data Byte Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.12.2 8.12.3 8.12.4 8.13 8.13.1 8.13.2 8.13.3 8.13.4 8.13.5 High-Frequency-Products i 26.1.01 Preliminary Specification TUA6100B6 9 9.1 9.2 9.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 AC/DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 11 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 high side synthesizer VCO narrow band loop filter example . . . . . . . . . . . . . . . . . 28 high side synthesizer VCO wide band loop filter example . . . . . . . . . . . . . . . . . . . 29 Phase noise performance of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Optimum phase detector current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VCO steepness + phase detector current ranges . . . . . . . . . . . . . . . . . . . . . . . . . 31 VCO tuning voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Receiving frequency band splitting into 2 or 3 ranges . . . . . . . . . . . . . . . . . . . . . . 32 12 Base band filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Frequency response incl. the two base band amplifiers + output load . . . . . . . . . 33 Group delay incl. the two +16 dB base band amplifiers + output load. . . . . . . . . . 33 13 13.1 13.2 13.3 13.8 Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Frequency flatness of base band outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Group delay of base band outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Frequency response of base band outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Group delay at low frequencies, dependent on coupling capacitor . . . . . . . . . . . . 36 RF gain control range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 RF input impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 RF input impedance continued, Smith diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Base band output impedance pin 13, 14 (filtered), Smith diagram . . . . . . . . . . . . 38 Base band output impedance pin 19, 20 , Smith diagram . . . . . . . . . . . . . . . . . . . 39 Base band output impedance Pin 19, 20 (Ohm) . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Base band output inductance Pin 19, 20 (Henry) . . . . . . . . . . . . . . . . . . . . . . . . . 40 Base band Input Impedance (filtered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 14 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13.4 13.5 13.6 13.7 High-Frequency-Products ii 26.1.01 DCR Sat-Frontend Gain controlled I/Q Mixer for digital QPSK Sat signals TUA6100B6 Preliminary Specification 1 2 BICMOS Features Low impedance gain controlled RF input Dual matched double balanced mixer Digital generation of 0/90 LO signal Direct down conversion from 1. IF (LNB output) to base band 0-30 MHz IF filter not necessary I / O for external baseband filter CMOS PLL-Synthesizer Active loop filter (high voltage) 3 high current switch outputs Buffered crystal oscillator output Low noise reference voltage 3-wire bus and I2C bus with 4 addresses + subaddresses Splitting of Sat tuning range into 2/3 bands LO - frequency below and above input frequency possible TSSOP-28 Package General Description The TUA 6100 is a low cost chip in the newest Infineon high speed BICMOS technology B6HFC. It is designed to implement the direct conversion receiver principle for digital QPSK-Sat receiving systems. The DCR architecture eliminates the need for expensive RF-Filters for image rejection and IF-Frequencies for channel selection. Instead, an inexpensive base band low-pass filter is used for channel selection, and no image rejection filter is required. These base band filter enable the possibility for an on chip integration. (not part of TUA6100) The DCR system is the most promising architecture to lower the cost of digital set-top boxes front end. Via a gain controlled RF preamplifier (not part of TUA6100) with approx. 30 dB gain and some selectivity, the RF signal is symmetrical fed to two low input impedance double balanced mixers . The mixers have common inputs with internal power splitting and incorporate a new patented direct gain control in the mixer input stage and an additional gain control at the mixer output to improve S/N ratio. The signal of the synthesizer tuning VCO is multiplied to 4 x RF input frequency via a complete internal 3.8-8.6 GHz PLL system. To drive the mixers, this 3.8-8.6 GHz signal is split into quadrature components by a Johnson-counter . The mixers are followed by 2 matched 16 dB fixed gain base band amplifiers making available the first linear DC-coupled base band outputs with approx. 224 mVpp for the I and Q signal . Two additional 16 dB fixed gain base band amplifiers with approx. 1 Vpp output voltage enable the possibility to use system adapted external AC-coupled base band filter and eliminate undesirable DC-components of the first amplifiers . High-Frequency-Products 1 26.1.01 Preliminary Specification TUA6100B6 The TUA 6100 contains – 2 double balanced mixer cells with new patented direct gain control, – a digital generation of the 0/90 local oscillator phase shifted signal to ensure minimum quadrature phase error, – an internal synthesizer VCO with programmed band splitting and external varactor and resonator, – 2 internal GHz VCO’s and a PLL for generation of 4 x RF input frequency, (necessary for the accurate digital generation of the LO I/Q components) – a CMOS PLL-synthesizer controlled by I2C or 3-wire bus, – an active synthesizer loopfilter with high voltage and high current output, – an on chip reference oscillator (external crystal) which can be overridden by an external oscillator, and – 4 ultra linear base band output amplifiers with approx. 16dB gain each. The PLL-synthesizer is programmable to work with reference frequencies > 4kHz and up to 2 MHz, for more information see Divide ratio programming on page 14. A programmable phase detector output current makes it easy to select several transconductances controlled by bus. A simple Windows control-program for I2C / 3-wire bus with short description is available. 3 Ordering Information Type Ordering Code Package TUA6100B6 Q 67037-A 1034 A 701 P-TSSOP-28-1 TUA6100B6 not yet available P-TSSOP-28-5 4 Pin Configuration top view 2-pin synthesizer VCO configuration High-Frequency-Products 1 28 Xtalout VCC 2 27 SDA PDLOOP 3 26 SCL TUNE 4 25 CAS GND 5 24 P0 P1 6 23 RFINY OB1 7 22 RFINX OB2 8 21 GAIN P2 9 20 QOUT PDOUT 10 19 IOUT BUSMODE 11 18 VCC1 GND1 12 17 IFIN IFOUT 13 16 GND2 QFOUT 14 15 QFIN P-TSSOP-28-1 QOSZ 2 26.1.01 Preliminary Specification 5 TUA6100B6 Pin Definitions and Functions Pin No. Symbol Function P-TSSOP-28 6 1 QOSZ Reference oscillator input / Crystal 2 VCC 3 PDLOOP 4 TUNE Synthesizer Loop filter high voltage tuning output 5 GND Ground for I2C / 3-wire bus and synthesizer 6 P1 7 OB1 VCO for synthesizer, stripline input 1 8 OB2 VCO for synthesizer, stripline input 2 9 P2 10 PDOUT 11 BUSMODE 12 GND1 Ground for analog part; LO and 0/90 phase generator 13 IFOUT Base band I output 14 QFOUT Base band Q output 15 QFIN Q baseband filtered input signal 16 GND2 Base band Ground 17 IFIN 18 VCC1 Power supply voltage for analog part; LO and 0/90phase generator 19 IOUT Base band I output for base band filter 20 QOUT Baseband Q output for baseband filter 21 GAIN AGC voltage input 22 RFINX 23 RFINY 24 P0 25 CAS CAS input for I2C bus, Enable input for 3-Wire-bus 26 SCL Clock input for I2C bus, Clock input for 3-Wire-bus 27 SDA SDA input/output for I2C bus, Data input for 3-Wire-bus 28 Xtalout Power supply voltage for I2C / 3-wire bus and synthesizer Synthesizer Phase detector Charge pump output / Loop filter input Port 1 output Port 2 output Phase detector loop filter of internal GHz-PLL Selection of I2C / 3-wire bus I baseband filtered input signal RF differential input signal (950-2150MHz) Port 0 output Buffered crystal oscillator output Applications DBS, DVB-S, DSS Set-Top Boxes, any I/Q Downconverter from 950 MHz - 2150 MHz to frequencies 0 - 30 MHz High-Frequency-Products 3 26.1.01 7 Port -55...-15 dBm @ 50 Ω symm. - 9 dBm 30 MHz Basebandfilter Xtalout SDA Clock CAS P0 RFinY RFinX GAIN Qout Iout 28 27 26 25 24 23 22 21 20 19 digital power supply Ports Buffer 4 Tuning 16 Synthesizer VCO analog power supply 2 3 4 5 6 7 8 9 10 QOSZ VCC PDLOOP TUNE GND P1 OB1 OB2 P2 PDout Tank Circuit 9 MHz Loopfilter 11 Busmode 12 13 14 Gnd1 IFout QFout + 4 dBm output 26.1.01 TUA6100B6 1 2 kHz Loopfilter 15 Dual 16 dB Baseband Amplifier Low Noise Bandgap Crystal QFin Loop Active Loopfilter Crystal Oscillator Gnd2 Power Regulation GHz PLL (4 x Fin) Quadratur Phase Generator GHz Prescaler 17 Dual 16 dB Baseband Amplifier -10..30 dB Gain CMOS Synthesizer PLL 18 IFin Preliminary Specification Dual I /Q Mixer VCC1 Block Diagram High-Frequency-Products Bus Control Preliminary Specification 8 TUA6100B6 Circuit Description The main function of the chip is split into bipolar analog signal processing, bipolar digital signal generation of 0/ 90 LO-signal and a CMOS synthesizer. Extremely symmetrical layout with matched structures promises best phase and gain balance of the inphase and quadraturephase signals. 8.1 Input Mixer Parameter see RF input (950-2150MHz) symm. balanced signal on page 23 Main function is the conversion of a preselected satellite 1. IF band into the inphase and quadraturephase baseband signals. The input stage of the mixer is directly combined with a new patented differential input gain control of 30 dB control range and a double balanced mixer with additional gain control of 15 dB in the output. The integration of the gain control into the mixer cell results in high compression point / IP3 at full attenuation and requires low chip area . The differential input has low impedance and is designed for 50 systems with a certain mismatch. Due to the built in gain control the mixer conversion gain varies between -10 and +35 dB. The output is internal DC-coupled to the first base band amplifier. For best performance the 0/ 90 LO-signal is fed to the mixer via open collector stages with well defined output impedance and levels. The AGC voltage input is positive DC-controlled, that means 0.5V - min. gain, 3V - max. gain, with MOS high impedance input. The characteristic of the RF gain control range is mainly non linear . 8.2 Baseband Amplifier Parameter see Base band I / Q output, on page 23 and Base band I / Q output filtered, on page 24 The 4 base band amplifiers are of wide-band operational type with high overshoot margin. The DC reference voltage is internal set to 2.15 V dc . All the amplifiers have a fixed gain of 16 dB and 30 MHz-0dB bandwidth. The distribution of the whole DC-gain into two AC-coupled 16 dB amplifiers ensures that the base band amplifiers are not overdriven by a large DC-voltage that may be caused by mixer offset or mixer LO feedback to the input. All 4 outputs can be disabled by bus control. (Register 02,D14) In this state the outputs switch to low voltage and low impedance. 8.3 Output Ports Parameter see Port outputs, P0, P1, P2 on page 26 The output ports are designed with open collector transistor for high current pull down and slow switching application. 8.4 Reference Voltage Parameter see Power supply on page 23 The central reference voltage is a low noise high PSSR bandgap with approx. 2.4 V DC and low temperature drift. 8.5 Reference Oscillator Parameter see Reference oscillator input / Crystal on page 24 The reference oscillator input is the low impedance feedback of a cascode amplifier and uses the low series resonance of a crystal to generate an oscillation condition. For a wide characteristic range the reference oscillator can use crystals from 1 - 16 MHz and may be used as external AC-coupled reference input if no crystal is present. High-Frequency-Products 5 26.1.01 Preliminary Specification TUA6100B6 8.6 Crystal Oscillator Output Parameter see Crystal oscillator output on page 26 To reduce the amount of application components in combination with a digital QPSK demodulator, the TUA 6100 offers an buffered Push-Pull output of the crystal oscillator. The frequency is the crystal frequency and is not programmable, the output signal is always on. 8.7 Synthesizer Loop filter Parameter see Synthesizer Loop filter high voltage tuning output on page 25 The synthesizer active loop filter consists of a simple inverting BICMOS amplifier with MOS input and a special open collector output transistor which can handle high voltage and high output currents. The loop filter input is internal connected to the phase detector / charge pump output. The BICMOS amplifier output may be disabled (high Z) by bus, control register (Register 00,D0). 8.8 Synthesizer VCO Parameter see Synthesizer VCO on page 26 . The synthesizer VCO is a symmetrical Colpitts type oscillator with an external tank circuit. The tank circuit consists of two microstrip lines connected to the oscillator bases and at the microstrip line ends two serial connected varicap diodes. These diodes are driven by the tuning voltage. The synthesizer VCO oscillates at a programmed offset to the input frequency. This guarantees minimum oscillator pulling and self-mixing with the result of undesirable DC-signal voltage. The offset may be at low side or high side of the input signal or zero (that means Fvco = Finput ). The VCO tuning range is digital split into 2 or 3 bands controlled by the internal GHz PLL. (not possible if operation Fvco = Finput is desired for the hole tuning range) Advantages : • only one optimized VCO for the complete tuning range which is approx. 1 : 2.34 (due to the KVCO and Loop bandwidth variation it is difficult to obtain this range by one conventional VCO with constant low phase noise) . • reduced external components • smaller package • lower phase noise due to the reduced tuning range of VCO • lower synthesizer loop filter bandwidth variation • lower maximum tuning voltage. Detailed programming tables see GHz PLL programming on page 9 . 8.9 Phase Shift 0 / 90 Parameter see Synthesizer PLL on page 25 To get minimum quadrature phase error, a digital generation of the 0/90 phase shifted local oscillator signal is implemented by a 3.8-8.6 GHz Johnson-counter This counter is designed in high speed stacked ECL bipolar technology. 8.10 GHz VCO Two On-Chip bipolar LC-Oscillators (3.4-6.2 GHz and 6.0-8.6 GHz) controlled via On-Chip PLL . The GHz VCO’s oscillate at 4 x of the input frequency and are current controlled. The resonant circuit is an on chip symmetrical inductor driven by differential pair amplifier whose current variable parasitic capacitance is used for frequency tuning. The used special multi-tanh gilbert cell makes a wide tuning range possible. The complete GHz VCO’s are under control of a 3.8-8.6 GHz PLL system. The reference frequency of this system is the output of the synthesizer VCO divided by a programmable counter; variation is 118-538 MHz(depending on the selected synthesizer tuning range). At the same time this is the operating frequency range of the phase detector / charge pump. The high speed charge pump is completely on chip and designed in BICMOS technology with an external loop filter bandwidth set to 9 MHz. The GHz VCO frequency is fed to the phase detector via the high speed ECL Johnson counter 4 and a lower speed programmable ECL counter. High-Frequency-Products 6 26.1.01 Preliminary Specification TUA6100B6 8.11 GHz PLL Normally in DCR systems it is necessary that the synthesizer VCO oscillates exact at the desired receiving frequency. The following description shows a new patent pending double PLL tuning system without this requirement and enables some features that other concepts do not have. The main benefit of this new concept is : – – – – – the accurate 0 / 90° generation of the LO signals for the RF input mixer, no oscillator on input frequency, a programmed frequency offset of synthesizer VCO to the RF input frequency and due to that a very low VCO oscillator pulling and self mixing according to power crosstalk of RF input and the possibility of splitting the tuning range into bands. Responsible for these advantages is a 2nd GHz PLL system with two VCO’s at 4 x Fin. This 2nd GHz PLL system is located in the broken up feedback of the synthesizer PLL 1 between the VCO1 and the programmable counter input N1. This represents a system of two cascaded PLL’s. PLL 1 (Synthesizer) Fref R1 PD1 PLL 2 VCO1 CP1 R2 PD2 VCO2 CP2 interrupted PLL 1 X N : main counter N1 R : reference counter PD : phase detector CP : charge pump VCO : voltage controlled oscillator Q2 : Quadraturphase + prescaler cascaded PLL system N2 Q2 LO I/Q output to mixer This location enables a shift of the synthesizer VCO1 to other frequencies, independent of the required input LO frequency of the RF mixers. In this case the synthesizer VCO must not oscillate at the required LO frequency of the mixer input. Nevertheless the synthesizer PLL is referenced to the LO frequency of the mixer input which makes it easy to program the PLL because it is set exact to the receiving frequency. Another benefit is the exact mapping of the PLL stepsize to the tuning frequency. This is not possible in a conventional PLL tuning system with the feedback of the VCO1 direct to the programmable counters N1, if the VCO1 is not running on the RF input frequency. This may become clear in the above concept, if the interrupted PLL 1 is closed and the LO I/Q output is cut off from node x. In this case step size and tuning frequency have additional terms of calculation. Depending on the system concept. they do not fit to the programmed values of the synthesizer PLL 1, because it is referenced to the VCO1 and no longer to the LO I/Q output. ( following dependencies will become valid, Ftune = (N2 / R2)Fvco1 and Fstep = (N2 / R2)PLL1step ). The R2 and N2 counters of the GHz PLL enable a programmable frequency offset of the synthesizer VCO to the RF input as well as a splitting of the required RF tuning range. For the band splitting feature the counters R2 and N2 of the GHz PLL must be used with 2 different values (e.g. 4/2 and 4/3). As a result VCO1 will pass his range twice, while the LO I/Q output to mixer will have a tuning range which is split into 2 bands. In the feedback of the GHz PLL is located the high speed Johnson-counter (Q2) which acts as prescaler for the two 3.4 - 8.6 GHz VCO’s and accurate 0 / 90° LO generator. The complete GHz PLL is designed in high speed ECL cascoded technology which enables counter frequencies up to 15 GHz , oscillator frequencies up to 10 GHz and phase detector / charge pump signal slopes of less then 100 ps. High-Frequency-Products 7 26.1.01 Preliminary Specification TUA6100B6 8.11.1 Functional GHz PLL Block Diagram 2nd GHz PLL (Quadrature Phase loop) loop filter VCO2 4 x Fin 9 MHz 3.4-6.2GHz 6.0-8.6GHz programming lines 0.95-2.15 R2 N2 GHz programmable counter 2/3/4 phase detector type 4 100-550 MHz programmable counter 2/ 3/4 counter2 counter 2 0.4 - 3.3 GHz Fpd2 counter 2 0.9 - 2.2 GHz 0/90°counter2 2nd loop reference input detailed to the mixer I Q 2nd loop output drawing 2 F vco = F IQ R ------ N2 2nd GHz-PLL , performing Quadrature Phase Generator, Band splitting and VCO offset Fvco conventional synthesizer loop Fvco Synthesizer VCO 0.4 - 2.9 GHz reference oscillator 1-16 MHz programming lines I2C / 3-wire bus programming Interface loop filter 2 kHz synthesizer input = Fpr N+A R programmable counter 2-1023 0.5 - 16 MHz input Fref P modulus.prescaler 32 / 33 ; 64 / 65 programmable counter 2-2023 phase detector type 4 DC - 2 MHz 0.5 - 100 MHz FN 0.2 - 2.5 GHz programming lines Synthesizer Loop High-Frequency-Products 8 26.1.01 Preliminary Specification TUA6100B6 8.11.2 GHz PLL programming programmable tuning ranges of the synthesizer VCO controlled by GHz PLL for Fin = 950 - 2150 MHz F VC O F I nput ------------------ 0.5 0.66 0.75 1 1 1 1.33 1.5 2 2 --4 2 --3 3 --4 2 --2 3 --3 4 --4 4 --3 3 --2 4 --2 Possibilities of 2 band splitting without VCO at input frequency GHz-PLL R 2 R-Counter ------N 2 N-Counter 1:1.51 tuning range Fvcomin Fvcomax 712 712 <- + -> 1076 1076 1900 2870 <- + -> 1900 2870 MHz Finmin Finmax 949 1424 <- + -> 1434 2152 1425 2152 <- + -> 950 1435 MHz Possibilities of 3 band splitting without VCO at input frequency 1:1.53 tuning range Fvcomin Fvcomax 700 1075 830 934 712 934 2173 2867 2182 2445 1900 2910 MHz Finmin Finmax 1400 2150 1245 1400 949 1245 1630 2150 1455 1630 950 1455 MHz low side VCO VCO at Fin R2 F vco = ------- F in N2 band switching at 1430 MHz R2 F vco = ------- F in N2 band switching at 1455, 1630 1245, 1400 MHz high side VCO Note: the maximum operating frequency of the synthesizer VCO is 2.9 GHz for the low side VCO mode and VCO at Fin application is not yet available. 8.11.3 Synthesizer VCO band switching Programming tables of the synthesizer VCO band switching controlled by the GHz-PLL Register 01 Subaddress 01H D23 GHz VCO Switch 0 3.4-6.2 GHz 1 6-8.6 GHz Register 01 Subaddress 01H N12 D21 N02 N-Counter D20 GHz-PLL R12 D13 R02 R-Counter D12 GHz-PLL 0 0 :3 0 0 :3 0 1 :4 0 1 :4 1 0 :2 1 0 :2 1 1 :3 1 1 :3 recommended switching at 1525 MHz RFin below 1525 MHz Register 02 Subaddress 02H recommended switching for band splitting (high side VCO), Fvco = 1900 - 2870 MHz 1 0 :2 0 1 :4 3.4-6.2 GHz 1 0 :2 0 0 :3 RFin above 1525 MHz 0 0 :3 0 1 :4 0 1 6-8.6 GHz RFin 2 band RFin 3 band < 1430 MHz < 1455 MHz not used 1455-1620 MHz > 1430 MHz > 1620 MHz (low side VCO), Fvco = 712 - 1076 MHz 0 1 :4 0 0 :3 0 0 :3 1 0 :2 0 1 :4 1 0 :2 < 1430 MHz < 1245 MHz not used 1245-1400 MHz > 1430 MHz > 1400 MHz The GHz VCO must be switched in any case at RFin =1525 MHz if a tuning range including frequencies below and above 1525 MHz is used. High-Frequency-Products 9 26.1.01 Preliminary Specification TUA6100B6 8.12 Synthesizer PLL Parameter see Synthesizer Phase detector Charge pump output / Loop filter input and Synthesizer PLL ( page 25). The PLL block forms a digitally programmable phase locked loop (PLL) with a serial bus control. The circuit consists of a serial control logic, a high frequency dual modulus prescaler, an A- and a N-counter with dual modulus control logic, a reference- (R-) counter, and a phase detector with lock detector and charge pump output. 8.12.1 Serial Bus Control Logic For TUA6100 the combi-bus is selectable between I 2C and 3-wire-busmode by pin BUSMODE ( I2C = low, 3W = high ). All bus pins (CLOCK, DATA, ENABLE and BUSMODE) are Schmitt-triggered with input buffer for 3V or 5V C. Programming of the IC is done by a serial data protocol with sub addressing. The contents of the message is assigned to the functional units according to the preceded sub addresses. Before programming the counters the control register (sub address 00Hex) should be set. The data bit stream starts with the most significant bit (MSB) and is shifted in on the low to high transition of the clock signal. • I2C bus mode In this mode four different chip addresses can be set by appropriate DC level at pin ENABLE which has in this case the function of a chip address select (CAS). The pin DATA is a bidirectional input/output pin for serial data (SDA) from and the acknowledge bit (ACK) to the microcontroller (µC). Data Transition: Data transition on the pin DATA must only occur when the serial clock (SCL) is low. SDA transitions while SCL is high will be interpreted as start or stop condition. Start Condition (STA): A start condition is defined by a high to low transition of the SDA line while SCL is at a stable high level.This start condition must precede any command and initiate a data transfer onto the bus. Stop Condition (STO): A stop condition is defined by a low to high transition of the SDA while the SCL line is at a stable high level. This condition terminate the communication between the devices and forces the bus interface into the initial conditions. Acknowledge (ACK): Indicates a successful data transfer. The transmitter will release the bus after sending 8 bit of data. During the 9th clock cycle the receiver will pull the SDA line to low level to indicate it has received the 8 bits of data correctly. Data Transfer Write Mode: To start the communication, the bus master must initiate a start condition, followed by the 8bit chip address (write). The chip address for the TUA 6100 is fixed as ”11000xyz” (MSB at first). The last significant bit (LSB=z) of the chip address byte defines the type of operation to be performed: z=1 means, a read operation is selected and z=0 means, a write operation is selected. After the successful comparison of the transmitted chip address with the fixed one include the hard-switched chip address select bits CAS2=x and CAS1=y, the serial control logic of the TUA6100 will generate an ACK. Otherwise the processor must break off the data transfer. After this device addressing the desired subaddress byte and data bytes must be followed. The subaddresses determines which one of the data bytes (00H...03H) is transmitted first. At the end of the data transition the master must generate the stop condition. High-Frequency-Products 10 26.1.01 Preliminary Specification TUA6100B6 Data Transfer Read Mode: To start the communication in the read mode, the bus master must initiate a start condition, followed by the 8bit chip address (write: z=0) and by the subaddress (80H) of the read register. Then followed by the chip address (read: z=1). After that procedure the 8bit data register 80H is read out. When the first byte(s) read out the µC mandatory send LOW during the ACK-clock, but after the last byte is read out the µC mandatory send HIGH (neg. ACK) during the ACK-clock. At the end of data transition the master must be generate the stop condition. • 3-wire bus mode Pin DATA is in this mode only data input. There is no data output. Pin ENABLE is used to activate the bus interface and to allow the transfer of data to the device. When ENABLE is in an inactive high state, shifting is inhibited. Data Transition: Data transition on the pin DATA must only occur when the clock SCL is low. To transfer data to the device, ENABLE (which must start inactive high) is taken low. A serial data transfer is made via DATA and CLOCK when ENABLE is taken back high. The bit stream doesn’t need a chip address. Data Transfer Write Mode: To start the communication, the signal ENABLE is taken low. The desired subaddress byte and data bytes must be followed. The subaddresses determines which one of the data bytes (00H...03H) is transmitted first. At the end of the data transition the bus ENABLE must be high. Data Transfer Read Mode: To start the communication in the read mode, the ENABLE is taken low, followed by the subaddress read (xxH). After that the device is ready to read out the xbit data register xxH. At the end of the data transition the ENABLE must be high. • Dual Modulus Prescaler The dual modulus prescaler up to 2.5 GHz is switchable between divide ratio 32/33 and 64/65 by the bit D22 in the A/N-counter subaddress (01H). Input frequency of the prescaler is the divided GHz-VCO-frequency 4 with the range of 950 MHz .. 2150 MHz. • R-Counter and A- / N-Counter The TUA 6100 has a 10-bit counter for the R-path and a 7-bit and 11-bit counter for the A-/N-path. The input frequency for the R-counter is the buffered XTAL-frequency (1-16 MHz). Tuning steps can be selected by the programmable R-counter from fR = 31.25 kHz ..1 MHz (fXTAL=16MHz). The output frequency of the prescaler (14 MHz..70 MHz) passes the programmable dual modulus A-/N-counter which switches the prescaler and make available the comparison frequency fV for the digital frequency / phase detector. • Phase Comparator (Frequency/Phase Detector) The digital phase and frequency sensitive phase detector generates a phase error signal UP or DOWN according to the phase difference between fR (R-counter output) and fV (N-counter output). This phase error signal drives the charge pump current generator. Polarity is changeable via bus (bit D4 of the control register), it must be negative for TUA6100 application note. If the positive edge of the divided VCO signal appears prior to the positive edge of the reference signal, the DOWN-output pulses for the duration of the phase difference. In the reverse case the UP-output pulses. If the two signals are in phase (PLL is locked), the phase detector produces an output signal with fixed anti-backlash impulses in order to prevent a dead zone for very small phase deviations. Therefore phase differences of less than 100 ps can be resolved. In general the shortest anti-backlash pulse gives the best system performance. High-Frequency-Products 11 26.1.01 Preliminary Specification TUA6100B6 • Charge Pump The charge pump generates defined pulses of current (I+ and I-) by the phase detector UP- and DOWN signals. If the PLL is locked and the bit D1 of the control register is LOW, the charge pump output (pin 3: PDLOOP) goes into the high-impedance state. There are four current values selectable by bit D2 and D3 of the control register (subaddress 00H). Note : only 100µA and 1mA are optimized. The synthesizer charge pump output may be disabled (high Z) by bus, control register(Register 00, D1). • Lock Detector The lock detector indicates when the PLL is locked (lock_in: LD_out = high). It is possible to put out the lock detect signal to the ports P0 or P2, by the control register bits D5 and D6. In this case the content of the respective control register bit for port P0 or P2 ( D18 of subaddress 01H or D10 of subaddress 02H ) is not active. Parallel the lock detector information may be read out by bus ( D7 of subaddress 80H ). High-Frequency-Products 12 26.1.01 ri fR 10-Bit R-Counter fV Status SCL / CLK PD IDOWN Data Reg. Ctr. 2 CPext 8-Bit Shift Register SDA / DA 8-Bit Shift Register 8-Bit Shift Register LockDetector CAS- 13 CAS / I+ Phase Detector Decoder Data Register Data Register Data Reg. Ctr. 1 Vcc GND LD Port 0 (LD) Test mode 7-Bit A-Counter rf Prescaler 64 / 65 32 / 33 11-Bit N-Counter 4-bit fi Dual Modulus Control Xtal out VCO Switch 26.1.01 TUA6100B6 rf P / (P+1) Port 2 (LD) 8-Bit Load SR 5-bit fi = Port 1 Preliminary Specification Data Register Serial Control Logic UP Iref 8.12.2 Functional Synthesizer PLL Block Diagram High-Frequency-Products Charge Pump Preliminary Specification TUA6100B6 8.12.3 Divide ratio programming Because of DCR concept the tuning frequency of the RF input controlled by the PLL is given below: rf = ri M P N + A ---- = ----- ri R R with rf : ri : P: A: N: R: M = (PN)+A : frequency of RFinput reference frequency input (crystal oscillator) divide ratio of the prescaler [ P/(P+1) = (32/33) or (64/65) ] divide ratio of the A-counter (max. 7 bit) divide ratio of the N-counter (max. 11 bit) divide ratio of the R-counter (max. 10 bit) total divide ratio of the PLL (with A<N) Note : for continuous frequency steps following condition is necessary AN P N + A P P – 1 8.12.4 Phase detector outputs fR fV UP Polarity (internal Signal) pos. DOWN Polarity (internal Signal) pos. PD Polarity pos. PD Polarity neg. P-Channel (I+) Tri-State. N-Channel (I-) P-Channel (I+) Tri-State. N-Channel (I-) Frequency fV < fR or fV lagging High-Frequency-Products Frequency fV > fR or fV leading 14 Frequency fV = fR (PLL is locked) 26.1.01 Preliminary Specification TUA6100B6 8.13 Bus Interface Pin Function Pin name BUSMODE Function Bus-Mode-Select Serial data 2 I C-mode (I2C) Data Low Data in / out 3Wire mode (3W) High Data in / out Clock Enable Clock Enable (3W) / Chip-Address-Select (I2C) Clock in Four Chip-Addresses (see below) High=Inactive, Low=Active 8.13.1 Chipaddress Organisation (only I2C-Mode) Chip Address MSB LSB Function 1 1 0 0 0 CAS2 CAS1 0 Chip Address Write 1 1 0 0 0 CAS2 CAS1 1 Chip Address Read Chip-Address-Select (CAS) Voltage on Pin CAS1) How to do? CAS2 CAS1 Chip-Address Hex Dec 0...0,5 V Pin CAS external on GND 0 0 C0 192 open circuit Pin CAS = 1,25 V (intern) 0 1 C2 194 2,0..3,0 V Rext = 68 kOhm external on Vcc , tolerance for R ext +-20% 1 0 C4 196 > 4,5 Pin CAS external on Vcc 1 1 C6 198 1) Vcc = 5V, voltage is a function of resistor divider from Vcc 8.13.2 Subaddress Organisation Sub Addresses of Write Data Registers MSB LSB Hex Function 0 0 0 0 0 0 0 0 00 Control-Register 0 0 0 0 0 0 0 1 01 A/N-Counter 0 0 0 0 0 0 1 0 02 R-Counter 0 0 0 0 0 0 1 1 03 for future use 1 0 0 0 0 0 0 0 80 Status-Register High-Frequency-Products 15 26.1.01 Preliminary Specification TUA6100B6 8.13.3 Bus Data Format I2C-bus write mode Bit Function STA 1 0 0 Bit MSB 1 CHIP ADDRESS (WRITE) 0 0 0 CAS2 CAS1 CAS1 LSB ACK S7 S4 S3 S2 MSB SUB ADDRESS (WRITE) 00H...03H LSB 1 0 0 Function Bit Function S7 MSB S7 MSB S5 SUB ADDRESS (READ) 80H S4 S3 0 S2 0 S1 0 LSB MSB STA restart 1 MSB 1 D5 0 D3 Bit S6 0 ... D4 MSB 3W-bus read mode S6 SUB ADDRESS (WRITE) 00H...03H S5 S4 S3 S2 S1 S0 LSB S0 LSB DX MSB DX MSB DATA_IN X...0 (X=7, 15 or 23) 0 0 CHIP ADDRESS (READ) ... ... D5 D5 D4 D3 DATA_IN X...0 (X=7, 15 or 23) D4 D3 D2 CAS2 D2 D2 D1 CAS1 D1 D1 D0 SUB ADDRESS (READ) 80H ACK ACK DX 3W-bus write mode LSB 0 S1 S0 0 CHIP ADDRESS (WRITE) ACK S6 S5 MSB 1 CAS2 0 Function STA 1 0 I2C-bus read mode LSB 1 ACK ACK STO DX LSB D0 LSB D0 DATA_OUT FROM SUB ADD X...0 (X=7) LSB MSB ... D5 D4 D3 D2 DATA_OUT FROM SUB ADD X...0 (X=7) D1 D0 LSB 1 STO High-Frequency-Products 16 26.1.01 Preliminary Specification TUA6100B6 8.13.4 Data Byte Specification Register 00 Subaddress 00H Control - Register Register 01 Subaddress 01H A/N-Counter,Ports,VCO Register 02 Subaddress 02H R-Counter,Ports,VCO Register 03 Subaddress 03H for future use Bit Bit Bit Bit Function MSB Test-Mode / D7 Normal-Mode Function MSB GHz VCO Switch D23 Function MSB not used D15 (must be=0) Function MSB D7 D6 Test-Modes (in/out) LockDetect (on/off) D22 Prescaler Switch 32/33 <--> 64/65 D14 Base band amplifier disable D6 - D5 LockDetect-Out on Port 0 / 2 D21 N12 D13 R12 D5 - D4 Phase Detector polarity (+/-) D20 N02 D12 R02 D4 - D19 Port 1 D11 not used D3 - D18 Port 0 D10 Port 2 D2 - 0 D9 29 D1 - D0 LSB - D3 D2 ChargePump current 100/500µA ,1/2mA 2 N-Counter GHz-PLL 1 R-Counter GHz-PLL Charge Pump (on/off) D17 D0 Loop filter OP LSB (on/off) D16 29 D8 28 D15 28 divide D7 27 D14 27 D6 26 D13 26 D5 D12 25 synthesizer D4 D3 25 synthesizer 24 R-Counter 23 D1 ratio of the Register 80 Subaddress 80H Status - Register (READ) D11 24 D10 2 3 D9 22 2 ....2047 D1 Bit Function D8 21 D0 20 LSB MSB LockDetect-Out D7 D7 20 D6 D6 26 D5 D5 25 D4 D4 24 ratio of the D3 23 D2 22 D1 D1 21 A-Counter D0 LSB D0 LSB 20 0 ....127 D3 D2 for future use all bits high High-Frequency-Products N-Counter D2 divide ratio of the 22 2 ....1023 21 divide synthesizer 17 26.1.01 Preliminary Specification Control-Register (Register 00) ---> Subaddress 00H Bit Test-Mode: It is possible to switch into an internal chip test mode by bit D7 of the control register (subaddress 00H). If test mode is activated there are two test options available by bit D6 of the control register: Function MSB D7 0 Normal-Mode 1 Test-Mode D7 must be = 1 (Test-Mode) D6 0 R-counter / 2 -> output to Port P0 N-counter / 2 -> output to Port P1 1 Port P0 -> input to R-counter Port P1 -> input to N-counter D6 = 0 --> Test-Mode1: In this case the output frequencies of the counters divided by 2 ( ! ) are put out to the Ports P0 ( R-counter output frequency / 2 ) and P1 ( N-counter output frequency / 2 ) Nevertheless the phase detector and the charge pump are in function ( lock detector = OFF ). D7 must be = 0 (Normal-Mode) 0 Bit D5 not active 1 Bit D5 active D6 = 1 --> Test-Mode2: In this case the phase detector, charge pump and lock detector (= ON) can be tested by external frequencies which are applied to the Ports P0 (path of the R-counter frequency) and P1 (path of the N-counter frequency). ( Note: LD_out only on port P2 visible! ) D5 is only active for D6 = 1, D7 = 0 D5 D4 0 LockDetect output on Port 0 1 LockDetect output on Port 2 0 PhaseDetector polarity negative 1 PhaseDetector polarity positive D3 D2 Synthesizer ChargePump current D3 D2 D1 D0 LSB 0 0 100µA 0 1 500µA 1 0 1mA 1 1 2mA D18 Bit Function MSB D7 0 synthesizer PLL unlocked 1 synthesizer PLL locked Synthesizer ChargePump disabled D6 1 1 Synthesizer ChargePump enabled ..... 1 0 Synthesizer Loopfilter OP disabled 1 Synthesizer Loopfilter OP enabled D0 LSB 1 for future use, all bits = 1 Prescaler, Ports, GHz-PLL (Register 01) ---> Subaddress 01H Ports, GHz-PLL (Register 02) ---> Subaddress 02H Bit Bit D22 D19 Status-Register (READ) (Register 128) ---> Subaddress 80H 0 MSB D23 D21 D20 TUA6100B6 Function 0 GHz VCO = 3.4-6.2 GHz 1 GHz VCO = 6-8.6 GHz 0 Prescaler divide ratio 32/33 1 Prescaler divide ratio 64/65 D21 D20 N-Counter GHz-PLL 0 0 :3 MSB D15 D14 D13 D12 Function 0 not used (must be=0) 0 base band amplifier enabled 1 base band amplifier disabled D13 D12 R-Counter GHz-PLL 0 0 :3 0 1 :4 0 1 :4 1 0 :2 1 0 :2 1 1 :3 1 1 :3 0 Port_1 output = low level 1 Port_1 output = high level 0 Port_0 output = low level 1 Port_0 output = high level High-Frequency-Products D11 D10 18 0 - 1 - 0 Port_2 output = low level 1 Port_2 output = high level 26.1.01 Preliminary Specification TUA6100B6 8.13.5 Bus Timing I2C Bus BUS_MODE = LOW tBUF SDA tLOW tR tSP tF SCL S tHD.STA P tHD.DAT tHIGH tSU.DAT tHD.STA S tSU.STA tSU.STO P CAS (ENABLE) tSU.ENASDA tSU.ENASDA tSU.ENASDA S - START condition P - STOP condition 3W-Bus BUS_MODE = HIGH DATA tLOW tR tSP tF CLOCK tWHEN tHD.STA tHD.DAT tHIGH tSU.DAT tSU.STO ENABLE S P tSU.SCLENA tSU.SCLENA High-Frequency-Products 19 26.1.01 Preliminary Specification Parameter see also I2C and 3-Wire-bus on page 26 Symbol LOW level input voltage (DATA, CLOCK, ENABLE, BUS_MODE) TUA6100B6 Limit Values Unit min. max. VIL -0.5 0.96 V HIGH level input voltage (DATA, CLOCK, ENABLE, BUS_MODE) VIH 2.24 5.5 V Hysteresis of Schmitt trigger inputs VHys 1.12 V Pulse width of spikes which must be suppressed by the input filter tSP 0 50 ns LOW level output voltage (DATA), only I2C-bus at 3mA sink current at 6mA sink current VOL 0 0.4 0.6 V tOF 20+0.1C b1) 250 ns fSCL 0 400 kHz tBUF 1.3 -- µs Hold time (repeated) START condition. After this period, the first clock pulse is generated. 2) tHD.STA 0.6 -- µs LOW period of the SCL clock tLOW 1.3 -- µs HIGH period of the SCL clock tHIGH 0.6 -- µs Set-up time for a repeated START condition 2) tSU.STA 0.6 -- µs Data hold time tHD.DAT 0 Data set-up time tSU.DAT 100 Rise time, fall time of SDA and SCL signals tR, tF 20+0.1C b1) 300 ns Set-up time for STOP condition 2) tSU.STO 0.6 -- µs Setup time BUS_ENA to SDA 2) tSU.ENASDA 0.6 -- µs tSU.SCLENA 0.6 -- µs Output fall time from VIH min to VIL max with a bus capacitance from 10pF to 400pF with up to 3mA sink current at VOL SCL clock frequency Bus free time between a STOP and START condition Setup time CLOCK to BUS_ENA 2) 3) ns -- ns H-pulse width (BUS_ENA) for new data protocol 3) tWHEN 0.6 -- µs Capacitive load for each bus line Cb -- 400 pF 1) Cb= capacitance of one bus line in pF Note that the maximum tF for the SDA and SCL bus lines quoted in table above (300ns) is longer than the specified maximum tOF for the output stages (250ns).This allows series protection resistors to be connected between the SDA/SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tF . 2) only for I2C bus mode 3) only for I2C bus mode High-Frequency-Products 20 26.1.01 Preliminary Specification 9 TUA6100B6 Electrical Characteristics 9.1 Absolute Maximum Ratings The maximal ratings may not be exceeded under any circumstances, not even momentary and individual, as permanent damage to the IC will result. Parameter Symbol Supply voltage Limit Values Units min. max. VVCC - 0.3 5.5 V Supply voltage 1 VVCC1 - 0.3 5.5 V Crystal oscillator VQOSZ VVCC-3 > 0 VVCC-1 > 0 V Crystal oscillator buffered output VXTALOUT 0 VVCC V Synthesizer Charge pump out Loop filter in VPDLOOP 0 VVCC V Synthesizer Loop filter tuning output VTUNE - 0.3 35 V VCO inputs VOB1,VOB2 0 VVCC V VP0,P1,P2 0 VVCC V IP0,P1,P2 15 mA IP0,P1,P2 30 mA t Imax 1 ms Port outputs Port outputs , VP0,P1,P2 = VVCC, I=max GHz-PLL Charge pump out VPDOUT 0 VVCC V Baseband outputs I / Q VIOUT , QOUT IIOUT , QOUT 0 VVCC1 V 4 mA Baseband filtered inputs I / Q VIFIN,VQFIN 0 VVCC1 V VIFOUT , QFOUT 0 VVCC1 V 4 mA Baseband filtered Output I / Q IIFOUT , QFOUT AGC voltage VAGC 0 VVCC1 V RF input VRFINX , RFINY 0 1.5 < VVCC1 V I2C / 3-Wire-Bus SCL, SDA,CAS - 0.3 BUSMODE VVCC+0.3 V All values are referred to ground (pin), unless stated otherwise. All currents are designated according to the source and sink principle, i.e. if the device pin is to be regarded as a sink (the current flows into the stated pin to internal ground), it has a negative sign, and if it is a source (the current flows from Vs across the designated pin), it has a positive sign. High-Frequency-Products 21 26.1.01 Preliminary Specification Parameter TUA6100B6 Limit Values Symbol min. max. Units Absolute Maximum Ratings continued ESD-Protection pin 4, Tune 1) VESD - 500 500 V ESD-Protection all other bipolar pins 1) VESD -1 1 kV ESD-Protection all CMOS pins 1) VESD -1 1 kV Total power dissipation Ptot 687.5 mW Ambient temperature TA see note °C 2) Junction temperature Tj 125 °C Storage temperature Tstg 150 °C Thermal resistance junction case Rth 2 K/W - 20 - 40 1) all ESD tests done according to EIA/JESD22-A114-B (HBM incircuit test), as a single device incircuit contact discharge test. 2) The maximum ambient temperature dependends on the mounting conditions of the package. Any application mounting must guarantee not to exceed the maximum junction temperature of 125 °C. As reference the thermal resistance junction to case is given. To reach a high ambient temperature, a good solution is a 2-layer PCB board with complete GND plane under the chip body and a 2nd complete layer ground plane. Additional the area under the chip body should be equipped with as many via holes as possible, solded to the 2nd layer. Not used pins should be solded to GND if possible (e.g. unused ports). 9.2 Operating Range Within the operational range the IC operates as described in the circuit description. The AC / DC characteristic limits are not guaranteed. Parameter Symbol Supply voltage Limit Values Unit min max VVCC 4.5 5.5 V Supply voltage 1 VVCC1 4.5 5.5 V Difference between VCC...VCC1 and between GND...GND1 -0.3 0.3 V Current consumption Ivcc+vcc1 125 mA Input frequency range of mixer fRFIN 950 2150 MHz VCO frequency range fVCO 0.7 3 GHz Synthesizer Loop filter tuning output VTUNE 0.5 33 V Ambient temperature TA - 20 see note C High-Frequency-Products V 22 Test Conditions 2) 26.1.01 Preliminary Specification TUA6100B6 9.3 AC/DC Characteristics AC / DC characteristics involve the spread of values guaranteed in the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Parameter TA = 25 C,VVCC, VVCC1 = 5V Symbol Limit Values min typ max 110 125 Unit Test conditions mA RL>1M ,C L<1.5pf Power supply Total current consumption IVCC+IVCC1 RF input (950-2150MHz) symm. balanced signal (see Input Mixer on page 5) RF source impedance 50 Input frequency fRFIN minimum input RF level VRFIN maximum input RF level VRFIN Input impedance differential without any application balanced input, test circuit see page 27 950 -55 2150 MHz balanced -50 dBm balanced 1100 MHz -15 dBm balanced 1100 MHz f = 0.9 - 2.2 GHz see diagrams 13.5 and page 38 R RFIN 15 LRFIN 1.3 n Input gain control range A 40 Internal mixer gain A -10 43 45 dB 30 dB VGAIN=0.4...2.6V see diagrams 13.4 VCO power present at RF input - 60 - 50 dBm LO power present at RF input - 74 - 70 dBm f = R2 / N2 x fin f = fin input compression point -1 dB -7 -5 dBm minimum gain output compression point -1 dB + 13 + 15 dBm minimum gain,Vcc=5V Input IP2 + 28 + 32 dBm minimum gain Input IP3 +1 +5 dBm minimum gain Output IP3 + 21 + 25 dBm minimum gain dB maximum gain, SSB Noise Figure @1400 MHz F 15 16 Base band I / Q output, IOUT, QOUT, pin 19, 20 ( see Baseband Amplifier on page 5) DC voltage VIOUT VQOUT 2.15 V RL>1M DC quiescent current IIOUT,IQOUT 2.7 mA RL>1M Baseband I/Q output voltage VIOUT VQOUT 225 mV pp RL>1M 35 MHz f -1 dB 70 MHz no filter, IOUT-IFIN 47nF QOUT-QFIN 47nF Baseband I/Q output flatness 0.05 0.1 dB up to 25 MHz Quadrature error, phase 1 3 deg Quadrature error, gain 1 2.5 dB Internal amplifier gain A 16 Baseband I/Q output impedance R IOUT, R QOUT Baseband I/Q output bandwidth both amplifiers in series see diagrams 13.1 and 13.3 High-Frequency-Products f -0.1 dB 25 1000 50 23 balanced @ 1100 MHz RFin= -35 dBm, test circuit see page 27 dB internal from mixer output to I / Q OUT dynamic resistance 26.1.01 Preliminary Specification Parameter TA = 25 C,VVCC, VVCC1 = 5V Symbol Limit Values min typ max TUA6100B6 Unit Test conditions I / Q base band filtered input signal IFIN, QFIN, pin 15, 17 (see Baseband Amplifier on page 5) DC voltage VIFIN,V QFIN 2.1 V see filter on page 33 Baseband I/Q input impedance R IFIN,QFIN 18 k see diagrams 13.8 Base band I / Q output filtered, IFOUT, QFOUT, pin 13, 14 ( see Baseband Amplifier on page 5) symm. balanced input application DC voltage VIFOUT VQFOUT 2.1 V RL>1M DC quiescent current IIFOUT IQFOUT 2.7 mA RL>1M Baseband I/Q output voltage VIFOUT VQFOUT 1 Vpp RL>1M f - 0.5 dB 3.5 20 22 MHz f - 1 dB A 27 30 MHz no filter,15pf/1k load IOUT-IFIN 47nF QOUT-QFIN 47nF 16 dB VI,QFOUT / VI,QFIN Group delay variation, see 13.2 both amplifiers in series -250 250 ps 100kHz ..... 100MHz Baseband I/Q output impedance R IFOUT, R QFOUT 50 dynamic resistance S/N @ 45 Mbaud IFOUT,QFOUT 24 26 dB maximum gain, 1Vpp S/N @ 45 Mbaud IFOUT,QFOUT 30 32 dB minimum gain, 1Vpp VGAIN 0.4 V see diagrams 13.4 Base band I/Q output bandwidth both amplifiers in series see diagrams 13.1 and 13.3 Amplifier gain t AGC voltage input (see Input Mixer on page 5) Gain control range 100 2.6 Gain control input impedance R GAIN 100e Gain control input clamp voltage VGAINmax 3.75 Gain control input clamp current IGAINmax 180 6 V protected by resistor A VGAIN = Vcc1 V locked 2 mA see Control-Register 1 nA VPDLOOP = 2 V , guaranteed by design 500 Synthesizer Phase detector Charge pump output / Loop filter input (see Synthesizer Loop filter on page 6) DC voltage VPDLOOP DC current IPDLOOP Tristate output current IPDLOOP 1.8 0.1 0.1 Reference oscillator input / Crystal (see Reference Oscillator on page 5) 3.4 DC voltage VQOSZ Crystal frequency f 1 Crystal resistance f 10 negative input impedance ZQOSZ - 500 Drive current IQOSZ High-Frequency-Products 4 - 700 135 24 V 16 MHz series resonance 100 series resonance - 900 f = 4 MHz Arms f = 16 MHz, Cs=18pF 26.1.01 Preliminary Specification Parameter TA = 25 C,VVCC, VVCC1 = 5V Symbol Limit Values min typ max TUA6100B6 Unit Test conditions Synthesizer Loop filter high voltage tuning output (see Synthesizer Loop filter on page 6) LOW output voltage VTUNE 0 0.5 V ITUNE = 1.5 mA HIGH output current ITUNE 0 10 A VTUNE = 33V N-counter divide ratio N 2 2047 11-Bit, CMOS A-counter divide ratio A 0 127 7- Bit, CMOS R-counter divide ratio R 2 1023 10-Bit, CMOS P-counter divide ratio P 32/33 64/65 Synthesizer PLL (see Synthesizer PLL on page 10) -164 Equivalent phase noise at phase detector input, @ 1 kHz offset, within loop band width, 6 kHz loop BW, SSB -159 -158 -155 -149 Quadrature phase mismatch 1) 1 5/6-Bit, Bipolar dBc / Hz dBc /Hz dBc /Hz dBc / Hz dBc /Hz 3 Fref = 30 kHz Fref = 100 kHz Fref = 125 kHz Fref = 250 kHz Fref = 1000 kHz deg Total divide ratio see see 8.12.3 on page 14 M 992 4032 65.631 131.135 PLL tuning step size (programmable via R-counter) see Register 02 fref 0.9775 3.91 125 15.650 500 2000 8000 2) kHz f crystal = 1 MHz f crystal = 4 MHz f crystal = 16 MHz Continuous step size see 8.12.3 (programmable via R-counter) fref 32.759 957.66 kHz P = 32/33 f in = 950 - 2150 MHz Continuous step size see 8.12.3 (programmable via R-counter) fref 16.395 235.61 kHz P = 64/65 f in = 950 - 2150 MHz f 950 950 950 992 1984 1025 2050 2150 2150 2150 MHz fref = 15.625 kHz fref = 31.250 kHz fref = 62.5 ...500 kHz fref = 1.000 MHz fref = 2.000 MHz Frequency range with continuous step size for P = 64/65 3) f 950 950 1008 2016 2048 2150 2150 2150 MHz fref = 15.625 kHz fref = 31.25...166.7 kHz fref = 250 kHz fref = 500 kHz R-counter values for 166.666 kHz step size R Frequency range with continuous step size for P = 32/33 6 24 96 P=32/33 P=64/65 f crystal = 1 MHz f crystal = 4 MHz f crystal = 16 MHz 1) The minimum total divide ratio is only important for continuous frequency step size, if lower divide ratios are used not all frequencies are possible. To find out the missing frequencies our Windows control program for I2C / 3-wire bus may be used. 2) Step sizes > 2 MHz are not guaranteed, 1 MHz continuous step size is only possible for RFin > 992 MHz 3) For low power dissipation the use of the 64/65 prescaler should be preferred if the desired step size fits High-Frequency-Products 25 26.1.01 Preliminary Specification Parameter TA = 25 C,VVCC, VVCC1 = 5V Symbol Limit Values min typ max TUA6100B6 Unit Test conditions Synthesizer VCO (see Synthesizer VCO on page 6) DC voltage VOB1,VOB2 high side VCO frequency range fVCO 1900 2870 MHz 2 band split, page 32 high side VCO frequency range fVCO 1900 2910 MHz 3 band split, page 32 low side VCO frequency range fVCO 712 1076 MHz 2 band split, page 32 low side VCO frequency range fVCO 700 1075 MHz 3 band split, page 32 high side VCO frequency range fVCO 1424 2151 MHz +VCO at fin, band split low side VCO frequency range fVCO 950 1434 MHz +VCO at fin, band split 1.9 V VCO1) - 53 - 56 - 60 dBc 1 kHz offset, SSB Phase noise high side VCO 1) - 73 - 76 - 80 dBc 10 kHz offset, SSB Phase noise high side VCO 1) - 93 - 96 - 100 dBc 100 kHz offset, SSB Phase noise high side 1) Note : This is the phase noise of the free running VCO, not for the overall system performance at baseband output. For detailed system phase noise information see diagrams page 30 and page 31 and our separate application note. Port outputs, P0, P1, P2 (see Output Ports on page 5) Supply voltage VP 0 5.5 V max. Vcc LOW output voltage VP 0 0.5 V IP = 15 mA LOW output current IP 15 mA HIGH output current IP 10 A VP = 5 V Port outputs, I=max t Imax 1 ms VP0,P1,P2=VVCC Vpp RL>1M Vcc=5V, CL = 10 pF, f = 16 MHz 0 Crystal oscillator output (see Crystal Oscillator Output on page 6) Buffer output voltage 1) VXtalout Buffer output current IXtalout Buffer output impedance R Xtalout 1.1 1 mA 350 I2C and 3-Wire-bus Clock, Data, Enable, BUS_MODE (see Bus Data Format on page 16 and 8.13.5 Bus Timing on page 19) HIGH level input voltage VIH 2.24 VVCC V LOW level input voltage VIL -0.5 0.96 V LOW level output voltage (DATA), only I2C-bus VOL 0 0.4 0.6 V Hysteresis of Schmitt trigger inputs Vhys H-input current IH 0.2 L-input current IL -60 Input capacity CI 1 3mA sink current 6mA sink current V 10 5 A VI = VVCC = 5.5V A VI = GND pF 1) output voltage is dependant on Vcc High-Frequency-Products 26 26.1.01 100pF + 5V P0 100pF RF Gain 100 Ω SDA Bus Control CAS 10 Test circuit High-Frequency-Products 100pF 100 Ω 4.7nF 6.8pF 6.8pF SCL 2.2kΩ 4.7nF 4.7nF + 5V 10pF 10pF 100 Ω Xtalout 825Ω 3.3kΩ 28 27 26 25 24 23 20 27 CMOS Synthesizer PLL Tuning 16 15 Loop Active Loopfilter Crystal Oscillator 17 Power Regulation GHz PLL (4 x Fin) Quadratur Phase Generator GHz Prescaler 18 Dual 16 dB Baseband Amplifier Wide band Loop Filter 25 kHz 19 Dual 16 dB Baseband Amplifier Dual I /Q Mixer -10..30 dB Gain Ports Buffer 21 Synthesizer VCO analog power supply Low Noise Bandgap 1 2 3 4 Preliminary Specification digital power supply 22 825Ω 5 6 7 8 12pF 18pF 9 10 11 12 13 14 12pF 147Ω 100pF 4.7kΩ 147Ω 4.7kΩ 16 MHz 3.3kΩ + 33V 33kΩ 1nF 5.6kΩ 100nF 5.6kΩ 1nF 3.3kΩ 1nF 100kΩ BB857 BB857 + 5V P1 26.1.01 4.7kΩ P2 + 5V 1.2nF 100kΩ I Q TUA6100B6 + 5V 100 Ω + 5V P0 100pF 100 Ω SDA Bus Control CAS 3.9pF SCL 3.9pF 47nF 47nF l=min. 5mm d=0.65mm 100 Ω Xtalout Gain 10Ω + 5V 1µH 4.7kΩ 150Ω 28 27 26 25 24 39pF 23 Narrow band Loop Filter 28 CMOS Synthesizer PLL 3 kHz 20 19 18 17 39pF 16 Dual 16 dB Baseband Amplifier Power Regulation Loop Active Loopfilter Synthesizer VCO analog power supply Low Noise Bandgap 1 2 3 4 5 6 7 8 12pF 18pF 4.7kΩ 15 Dual 16 dB Baseband Amplifier GHz PLL (4 x Fin) Quadratur Phase Generator GHz Prescaler Tuning Crystal Oscillator 21 Dual I /Q Mixer -10..30 dB Gain Ports Buffer 4.7pF 9 10 11 12 13 14 Preliminary Specification digital power supply 22 1µH 150Ω 4.7nF 10pF 22pF 22pF 4.7pF 4.7nF 11 Application circuits 3 kHz typ. 100pF • high side synthesizer VCO narrow band loop filter example High-Frequency-Products RF 100pF 12pF 1nF 4.7kΩ 4 MHz 1nF + 33V 220nF 2.2kΩ 4.7nF 10kΩ 1kΩ I BB835 BB835 33kΩ 1kΩ 2.2kΩ 4.7nF Q 26.1.01 TUA6100B6 + 5V 25 kHz typ. 100pF 100 Ω + 5V P0 100pF 100 Ω SDA Bus Control CAS 3.9pF SCL 3.9pF 47nF 47nF l=min. 5mm d=0.65mm 100 Ω Xtalout Gain 10Ω + 5V 1µH 4.7kΩ 150Ω 28 27 26 25 24 39pF 23 21 20 Dual I /Q Mixer -10..30 dB Gain Ports Buffer 29 CMOS Synthesizer PLL 17 39pF 16 Dual 16 dB Baseband Amplifier Power Regulation Synthesizer VCO analog power supply Low Noise Bandgap 1 2 3 4 5 6 7 8 12pF 18pF 15 Loop Active Loopfilter Crystal Oscillator 18 GHz PLL (4 x Fin) Quadratur Phase Generator GHz Prescaler Tuning 19 Dual 16 dB Baseband Amplifier Wide band Loop Filter 25 kHz 4.7pF 9 10 11 12 13 Preliminary Specification digital power supply 22 1µH 150Ω 4.7nF 10pF 22pF 22pF 4.7pF 4.7nF • high side synthesizer VCO wide band loop filter example High-Frequency-Products RF 100pF 14 12pF 4.7kΩ 4.7kΩ 16 MHz 1nF + 33V 100nF 2.2kΩ 4.7kΩ 1kΩ I BB835 BB835 33kΩ 1kΩ 2.2kΩ 1.2nF Q 26.1.01 TUA6100B6 + 5V Preliminary Specification TUA6100B6 • Phase noise performance of application The over all system phase noise at base band of the TUA 6100 is strongly dependent on several parameter : 1.programming of the 2nd PLL (GHz-PLL setting of the R2 and N2 counter) 2.programming of the 1st synthesizer PLL - receiving frequency (variation of the VCO steepness due to non linearity of the varicap), - phase detector current, - crystal frequency, - step size = Fref, - loop filter parameter. ( bandwidth ) A well balanced phase noise over the whole tuning range requires an optimized parameter programming of the synthesizer PLL for each receiving frequency - 1st you have to decide for the optimum loop filter bandwidth for your application. Narrow band loop filter : achieves better PLL outband phase noise at high frequencies offset but lower PLL inband phase noise at low frequency offset. Wide band loop filter : achieves better PLL inband phase noise at low frequencies offset but lower PLL outband phase noise at high frequency offset. - 2nd you have to decide for the crystal frequency for your application. Higher crystal frequency achieves better PLL inband phase noise. - 3rd you have to decide for the varicap for your application. Linear varicaps achieves better balanced phase noise than non linear varicaps. - 4th you have to decide for the main stepsize for your application. Higher step size achieve better PLL inband phase noise. - 5th during programming the desired receiving frequency you have to set step size and phase detector output current for each frequency. This is necessary to compensate the non linearity of the varicap. All this is done in our separate application note with the above two application circuits which obtain the following worst case phase noise values : Narrow band loop filter 3 3 3 3 kHz Offset Frequency 1 10 100 1000 kHz Measured phase noise at base band - 55 - 76 - 98 - 100 dBc/Hz Wide band loop filter 30 30 30 30 kHz Offset Frequency 1 10 100 1000 kHz Measured phase noise at base band - 75 - 77 - 91 - 100 dBc/Hz For detailed information see our separate application note version B5. High-Frequency-Products 30 26.1.01 Preliminary Specification TUA6100B6 . • Optimum phase detector current valid for the two applications above, band splitting into 2 ranges Optimum Chargepump current for constant loop bandwidth and phasenoise 3,0 2,8 available current of TUA 6100 low band (ratio 2) border between 2 currents high band (ratio 4/3) 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 Fin [MHz] • VCO steepness + phase detector current ranges valid for the two applications above, band splitting into 2 ranges Kvco 200 180 Ratio=2 Ratio=4/3 160 140 MHz / V 120 100 80 60 40 0.5mA 20 950 1050 1mA 1150 1250 1350 0.5mA 2mA 1450 1550 1650 1mA 1750 1850 1950 2mA 2050 2150 Finput [MHz] High-Frequency-Products 31 26.1.01 Preliminary Specification TUA6100B6 • VCO tuning voltage valid for the two applications above, band splitting into 2 ranges F input 2200 2100 2000 1900 Ratio=4/3 1800 Ratio=2 [MHz] 1700 1600 1500 1400 1300 1200 1100 1000 900 2 3 4 5 6 7 8 9 10 Tuning Voltage [V] 11 12 13 14 15 • Receiving frequency band splitting into 2 or 3 ranges 3 band programming reduces the VCO pulling in the frequency range from 1430 to 1630 MHz high side VCO splitting , 2 + 3 ranges 2900 2800 VCO frequency range 2700 vco 2 ranges vco 3 ranges Fvco [MHz] 2600 2500 R2/N2 =4/2 =2.0 R2/N2 = 3/2 = 1.5 R2/N2 = 4/3 = 1.333 2400 2300 1455 1630 2200 Receiving frequency range 2100 2000 1900 900 1430 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 Finput [MHz] High-Frequency-Products 32 26.1.01 Preliminary Specification TUA6100B6 12 Base band filter for 45 MBaud signals BW = 25 MHz -1dB Baseband amplifier 150Ω 47nF . . from mixer Baseband amplifier 4.7pF . . 1µH +16dB 22pF Baseband output 15pF 1kΩ +16dB 39pF TUA 6100 internal parasitic TUA 6100 internal • Frequency response incl. the two base band amplifiers + output load 40.0 fLow: 25.258meg -1dB 30.0 fLow: 30.676meg -3dB 20.0 fLow: 47.546meg -20dB dB(V) 10.0 fLow: 56.469meg -30dB 0.0 fLow: 63.302meg -40dB -10.0 fLow: 67.177meg -50dB -20.0 -30.0 2meg 3meg 5meg 7meg 10meg 20meg 30meg 50meg 70meg 100meg 200meg f(Hz) • Group delay incl. the two +16 dB base band amplifiers + output load 4n group delay (s) 3n 2n 1n 0.0 -1n 2meg 3meg 5meg 7meg 10meg 20meg 30meg 50meg 70meg 100meg 200meg f(Hz) High-Frequency-Products 33 26.1.01 Preliminary Specification TUA6100B6 13 Electrical Diagrams 13.1 Frequency flatness of base band outputs without base band filter, both base band amplifiers in series, coupling capacitor 47nF 32.0 31.8 31.6 31.4 31.2 31.0 30.8 (20.033meg, 30.872) Delta Y: -0.47584 30.6 30.4 dB(V) 30.2 (30.076meg, 30.278) Delta Y: -1.068 30.0 29.8 29.6 29.4 (40.007meg, 29.511) Delta Y: -1.8355 29.2 29.0 28.8 28.6 (50.034meg, 28.617) Delta Y: -2.7339 28.4 28.2 28.0 100.0k 200.0k 500.0k 1meg 2meg 5meg 10meg 20meg 50meg 100meg 50meg 100meg f(Hz) 13.2 Group delay of base band outputs without base band filter, both base band amplifiers in series, coupling capacitor 47nF 0.0 -10p -20p -30p -40p group delay (s) -50p -60p -70p -80p -90p -100p -110p -120p -130p -140p -150p 100.0k 200.0k 500.0k 1meg 2meg 5meg 10meg 20meg f(Hz) High-Frequency-Products 34 26.1.01 Preliminary Specification TUA6100B6 13.3 Frequency response of base band outputs without base band filter, both base band amplifiers in series, coupling capacitor 47nF 35.0 30.0 fHigh: 371.24 -1dB fLow: 29.503meg -1dB 25.0 fLow: 53.587meg -3dB fHigh: 189.23 -3dB 20.0 15.0 dB(V) 10.0 5.0 0.0 -5.0 -10.0 -15.0 -20.0 1.0 3.0 10.0 30.0 100.0 0.3k 1.0k 3.0k 10.0k 30.0k f(Hz) 100.0k 300.0k 1meg 3meg 10meg 30meg 100meg 300meg 1g grop delay (s) Group delay (coupling capacitor 47nF, low frequencies response is dependent on coupling capacitor) 0.0 -2u -4u -6u -8u -10u -12u -14u -16u 1.0 3.0 10.0 30.0 100.0 0.3k 1.0k 3.0k 10.0k 30.0k f(Hz) 100.0k 300.0k 1meg 3meg 10meg 30meg 100meg 300meg 1g 1.0 3.0 10.0 30.0 100.0 0.3k 1.0k 3.0k 10.0k 30.0k f(Hz) 100.0k 300.0k 1meg 3meg 10meg 30meg 100meg 300meg 1g 30.0k f(Hz) 100.0k 300.0k 1meg 3meg 10meg 30meg 100meg 300meg 1g grop delay (s) 0.0 -20n -40n grop delay (s) -60n 0.0 -20p -40p -60p -80p -100p -120p -140p -160p 1.0 3.0 10.0 30.0 High-Frequency-Products 100.0 0.3k 1.0k 3.0k 10.0k 35 26.1.01 Preliminary Specification • TUA6100B6 Group delay at low frequencies, dependent on coupling capacitor Group delay versus coupling condensator at low frequencies 0.0 -20n CK=4700nF CK=47nF CK=470nF CK=4.7nF -40n group delay (s) -60n -80n -100n -120n -140n -160n 100.0 0.2k 0.5k 1.0k 2.0k 5.0k 10.0k f(Hz) 20.0k 50.0k 100.0k 200.0k 500.0k 1meg 13.4 RF gain control range 64.0 62.0 60.0 58.0 56.0 54.0 52.0 50.0 48.0 gain variation (dB) 46.0 44.0 42.0 40.0 38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0 18.0 16.0 0.0 0.2 0.4 High-Frequency-Products 0.6 0.8 1.0 1.2 1.4 1.6 gain control voltage (V) 36 1.8 2.0 2.2 2.4 2.6 2.8 3.0 26.1.01 Preliminary Specification TUA6100B6 13.5 RF input impedance 18.5 18.0 Input resistance (Ohm) 17.5 17.0 16.5 16.0 15.5 800meg 1g 1.2g 1.4g 1.6g 1.8g 2g 2.2g 2.4g 2.6g 2.8g 3g 2g 2.2g 2.4g 2.6g 2.8g 3g f(Hz) 1.37n 1.36n 1.35n Input Inductance (H) 1.34n 1.33n 1.32n 1.31n 1.3n 1.29n 800meg 1g 1.2g 1.4g 1.6g 1.8g f(Hz) High-Frequency-Products 37 26.1.01 Preliminary Specification TUA6100B6 50 10 25 0 30 75 35 40 45 • RF input impedance continued, Smith diagram 20 15 0 15 3 GHz 200 250 2 GHz 10 1 GHz 500 1k 5 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 5 0 10 800 MHz 1k 5 500 10 250 200 15 15 0 50 45 40 35 75 30 10 25 0 20 13.6 Base band output impedance pin 13, 14 (filtered), Smith diagram identical to pin 19, 20 45 40 80 50 90 100 70 60 10 25 50 20 14 0 40 0 13 0 30 120 75 35 110 15 150 15 30 200 250 20 10 160 0 500 10 170 100 M 30 M 5 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 10 5 0 180 1k 0 1M 200 -30 0 -15 250 -160 500 -170 1k -20 10 -10 5 15 0 10 25 -90 40 50 -80 45 -70 35 75 30 -1 -60 38 0 -100 -12 -1 0 30 0 -110 High-Frequency-Products -5 40 0 15 -4 20 26.1.01 Preliminary Specification TUA6100B6 13.7 Base band output impedance pin 19, 20 , Smith diagram 45 40 80 50 90 100 70 60 10 25 20 14 50 40 0 1 30 0 30 120 75 35 110 15 150 15 30 200 250 20 10 160 0 500 10 170 100 M 30 M 5 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 10 5 0 180 1k 0 1M 200 15 0 20 10 -1 75 -90 40 50 -80 45 -70 35 -60 30 30 0 25 -5 0 0 -1 -4 40 15 0 -15 250 -160 500 -170 1k -30 -100 - 120 -110 • -20 10 -10 5 Base band output impedance Pin 19, 20 (Ohm) 12.0 11.0 10.0 9.0 8.0 Ohm 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 100.0k 200.0k 300.0k High-Frequency-Products 600.0k 1meg 2meg 3meg f(Hz) 39 6meg 10meg 20meg 30meg 60meg 100meg 26.1.01 Preliminary Specification • TUA6100B6 Base band output inductance Pin 19, 20 (Henry) 35n Henry 30n 25n 20n 15n 100.0k 200.0k 300.0k 600.0k 1meg 2meg 3meg f(Hz) 6meg 10meg 20meg 30meg 60meg 100meg 50 45 10 25 0 30 75 35 40 13.8 Base band Input Impedance (filtered) 20 15 0 15 200 250 10 500 5 0 MHz 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 5 10 1k 0 100 MHz 1k 5 500 10 250 200 15 15 0 High-Frequency-Products 45 50 40 35 75 30 25 0 10 20 40 26.1.01 Preliminary Specification TUA6100B6 14 Package Outlines Plastic Package, P-TSSOP-28-1 alloy leadframe (Plastic Thin Shrink Small Outline) 0.9 Plastic Package, P-TSSOP-28-5 copper leadframe (Plastic Thin Shrink Small Outline) High-Frequency-Products 41 26.1.01