IRF IRF820ALPBF

PD - 95533
IRF820ASPbF
IRF820ALPbF
SMPS MOSFET
Applications
Switch Mode Power Supply (SMPS)
l Uninterruptable Power Supply
l High speed power switching
l Lead-Free
l
Benefits
Low Gate Charge Qg Results in Simple
Drive Requirement
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current
l Effective COSS specified (See AN 1001)
HEXFET® Power MOSFET
VDSS
RDS(on) max
ID
3.0Ω
2.5A
500V
l
D2 Pak
IRF820AS
TO-262
IRF820AL
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V†
Continuous Drain Current, VGS @ 10V†
Pulsed Drain Current †
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt Ġ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
2.5
1.6
10
50
0.4
± 30
3.4
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typical SMPS Topologies:
l
l
Two Transistor Forward
Half Bridge and Full Bridge
Notes 
through … are on page 8
www.irf.com
1
7/20/04
IRF820AS/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
500
–––
–––
2.0
–––
–––
–––
–––
Typ.
–––
0.60
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA †
3.0
Ω
VGS = 10V, ID = 1.5A „
4.5
V
VDS = VGS, ID = 250µA
25
VDS = 500V, VGS = 0V
µA
250
VDS = 400V, VGS = 0V, TJ = 125°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
1.4
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Avalanche Characteristics
Typ.
–––
–––
–––
–––
8.1
12
16
13
340
53
2.7
490
15
28
Max. Units
Conditions
–––
S
VDS = 50V, ID = 1.5A†
17
ID = 2.5A
4.3
nC
VDS = 400V
8.5
VGS = 10V, See Fig. 6 and 13 „†
–––
VDD = 250V
–––
ID = 2.5A
ns
–––
RG = 21Ω
–––
RD = 97Ω,See Fig. 10 „†
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5†
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 400V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 400V …†
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚†
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
140
2.5
5.0
mJ
A
mJ
Typ.
Max.
Units
–––
–––
2.5
62
°C/W
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient ( PCB Mounted, steady-state)*
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) †
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 2.5
showing the
A
G
integral reverse
––– –––
10
S
p-n junction diode.
––– ––– 1.6
V
TJ = 25°C, IS = 2.5A, VGS = 0V „
––– 330 500
ns
TJ = 25°C, IF = 2.5A
––– 760 1140 nC
di/dt = 100A/µs „†
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF820AS/LPbF
10
10
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
TOP
0.1
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
4.5V
20µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
1
4.5V
20µs PULSE WIDTH
TJ = 150 ° C
0.1
100
1
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
10
TJ = 150 ° C
1
TJ = 25 ° C
0.1
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
0.01
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
9.0
ID = 2.5A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF820AS/LPbF
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance(pF)
1000
Ciss
100
Coss
10
20
VGS , Gate-to-Source Voltage (V)
10000
ID = 2.5A
VDS = 400V
VDS = 250V
VDS = 100V
15
10
5
Crss
0
1
1
10
100
1000
FOR TEST CIRCUIT
SEE FIGURE 13
0
4
VDS, Drain-to-Source Voltage (V)
16
100
10
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 150 ° C
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
12
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1
TJ = 25 ° C
0.1
0.4
V GS = 0 V
0.6
0.8
1.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
8
QG , Total Gate Charge (nC)
1.2
10
10us
100us
1
0.1
1ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF820AS/LPbF
3.0
VGS
2.5
ID , Drain Current (A)
RD
V DS
D.U.T.
RG
+
-VDD
2.0
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
1.5
1.0
Fig 10a. Switching Time Test Circuit
VDS
0.5
0.0
90%
25
50
75
100
125
TC , Case Temperature ( ° C)
150
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
IRF820AS/LPbF
300
TOP
250
BOTTOM
ID
1.1A
1.6A
2.5A
200
150
100
50
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
700
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
V DSav , Avalanche Voltage ( V )
10 V
650
600
.2µF
.3µF
D.U.T.
+
V
- DS
550
0.0
0.5
1.0
1.5
2.0
2.5
IAV , Avalanche Current ( A)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRF820AS/LPbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® power MOSFETs
www.irf.com
7
IRF820AS/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 5 3 0 S W IT H
L O T CO D E 8 0 2 4
AS S E M B L E D O N W W 0 2 , 2 0 0 0
IN T H E AS S E M B L Y L IN E "L "
IN T E R N AT IO N AL
R E CT IF IE R
L O GO
N ote: "P " in as s em bly lin e
po s i tion in dicates "L ead-F r ee"
P AR T N U M B E R
F 53 0 S
AS S E M B L Y
L O T CO D E
D AT E CO D E
Y E AR 0 = 2 0 0 0
W E E K 02
L IN E L
OR
IN T E R N AT IO N AL
R E C T IF IE R
L OG O
AS S E M B L Y
L OT CO D E
8
P AR T N U M B E R
F 530 S
D AT E C O D E
P = D E S IGN AT E S L E AD -F R E E
P R O D U C T (O P T IO N AL )
Y E AR 0 = 2 0 0 0
WE E K 02
A = AS S E M B L Y S IT E C O D E
www.irf.com
IRF820AS/LPbF
TO-262 Package Outline
TO-262 Part Marking Information
E XAMPLE : T HIS IS AN IR L 3103L
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T HE AS S E MB LY LINE "C"
Note: "P" in as s embly line
pos ition indicates "L ead-F ree"
INT ER NAT IONAL
RE CT IF IE R
LOGO
AS S E MB LY
L OT CODE
PAR T NU MB ER
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
OR
INT E R NAT IONAL
R E CT IF IE R
LOGO
AS S E MB L Y
L OT CODE
www.irf.com
PAR T NU MB ER
DAT E CODE
P = DE S IGNAT E S L EAD-F R E E
PR ODU CT (OPT IONAL )
YE AR 7 = 1997
WE E K 19
A = AS S E MB L Y S IT E CODE
9
IRF820AS/LPbF
D2Pak Tape & Reel Infomation
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 Repetitive rating; pulse width limited by
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
‚ Starting TJ = 25°C, L = 45mH
… Coss eff. is a fixed capacitance that gives the same charging time
max. junction temperature. ( See fig. 11 )
RG = 25Ω, IAS = 2.5A. (See Figure 12)
ƒ ISD ≤ 2.5A, di/dt ≤ 270A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
as Coss while VDS is rising from 0 to 80% VDSS
† Uses IRF820A data and test conditions
* When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/04
10
www.irf.com