HYS 72Dxx5xxGR-7F/7/8-B Low Profile Registered DDR-I SDRAM-Modules 2.5 V Low Profile 184-pin Registered DDR-I SDRAM Modules 256MB, 512MB & 1GByte PC1600 & PC2100 Preliminary Datasheet Revision 0.91 • All inputs and outputs SSTL_2 compatible • 184-pin Registered 8-Byte Dual-In-Line DDR-I SDRAM Module for “1U” PC, Workstation and Server main memory applications • Re-drive for all input signals using register and PLL devices. • Serial Presence Detect with E2PROM • One bank 32M × 72, 64M x 72 and two bank 128M × 72 organization • Low Profile Modules form factor: 133.35 mm x 30,40 mm (1.2”) x 4.00 mm (6,80 mm with stacked components) • JEDEC standard Double Data Rate Synchronous DRAMs (DDR-I SDRAM) with a single + 2.5 V (± 0.2 V) power supply • Based on Jedec standard reference card layouts RawCard “L”, “M”, “N” • Built with DDR-I SDRAMs in 66-Lead TSOPII package • Gold plated contacts • Programmable CAS Latency, Burst Length, and Wrap Sequence (Sequential & Interleave) • Auto Refresh (CBR) and Self Refresh • Performance: -7F -7 -8 Unit Component Speed Grade DDR266F DDR266A DDR200 Module Speed Grade PC2100 PC2100 PC1600 fCK Clock Frequency (max.) @ CL = 2.5 143 143 125 MHz fCK Clock Frequency (max.) @ CL = 2 133 133 100 MHz The HYS72Dxx5x0GR are low profile versions of the standard Registered DIMM modules with 1.2” inch (30,40 mm) height for 1U Server Applications. The Low Profile DIMM versions are available as 32M x 72 (256MB), 64M x 72 (512MB) and 128M x 72 (1 GB). The memory array is designed with Double Data Rate Synchronous DRAMs for ECC applications. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer. INFINEON Technologies 1 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Ordering Information Type Compliance Code Description SDRAM Technology Module height HYS 72D32500GR-7F-B PC2100R-20220-L one bank 256 MB Reg. DIMM 256 MBit (x8) HYS 72D32500GR-7-B PC2100R-20330-L one bank 256 MB Reg. DIMM 256 MBit (x8) 1.2” HYS 72D64500GR-7F-B PC2100R-20220-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2” HYS 72D64500GR-7-B PC2100R-20330-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2” PC2100 (CL=2): 1.2” HYS 72D128520GR-7F-B PC2100R-20220-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with soldering process) HYS 72D128520GR-7-B PC2100R-20330-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with soldering process) HYS 72D128521GR-7F-B PC2100R-20220-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with laser welding process) HYS 72D128521GR-7-B PC2100R-20330-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with laser welding process) HYS 72D32500GR-8-B PC1600R-20220-L one bank 256 MB Reg. DIMM 256 MBit (x8) 1.2” HYS 72D64500GR-8-B PC1600R-20220-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2” HYS 72D128520GR-8-B PC1600R-20220-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with soldering process) HYS 72D128521GR-8-B PC1600R-20220-N two banks 1 GByte Reg. DIMM 256 MBit (x4) 1.2” (stacked with laser welding process) PC1600 (CL=2): Notes: 1. All part numbers end with a place code (not shown), designating the silicon-die revision. Reference information available on request. Example: HYS 72D32500GR-8-A, indicating Rev.A die are used for SDRAM components. 2. The Compliance Code is printed on the module labels and describes the speed sort fe. “PC2100R”, the latencies (f.e. “20330” means CAS latency = 2.5, trcd latency = 3 and trp latency =3 ) and the Raw Card used for this module INFINEON Technologies 2 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Pin Definitions and Functions A0 - A11,A12 Address Inputs VDD Power (+ 2.5 V) (A12 for 256Mb & 512Mb based modules) BA0, BA1 Bank Selects VSS Ground DQ0 - DQ63 Data Input/Output VDDQ I/O Driver power supply CB0 - CB7 Check Bits (x72 organization only) VDDID VDD Indentification flag RAS Row Address Strobe VDDSPD EEPROM power supply CAS Column Address Strobe VREF I/O reference supply WE Read/Write Input SCL Serial bus clock CKE0, CKE1 Clock Enable SDA Serial bus data line DQS0 - DQS8 SDRAM low data strobes SA0 - SA2 slave address select CK0, CK0 Differential Clock Input NC no connect DM0 - DM8 DQS9 - DQS17 SDRAM low data mask/ high data strobes DU don’t use CS0 - CS1 Chip Selects RESET Reset pin (forces register inputs low) *) *) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the Application Note at the end of this datasheet Address Format Density Organization Memory Banks SDRAMs # of SDRAMs # of row/bank/ columns bits Refresh Period Interval 256 MB 32M x 72 1 (256Mb) 32M x 8 9 13/2/10 8k 64 ms 7.8 µs 512 MB 64M × 72 1 (256Mb) 64M × 4 18 13/2/11 8k 64 ms 7.8 µs 1 GB 128M × 72 2 (256Mb) 64M × 4 36 (stacked) 13/2/11 8k 64 ms 7.8 µs INFINEON Technologies 3 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Pin Configuration PIN# Symbol PIN# Symbol PIN# 1 VREF 48 A0 93 2 DQ0 49 CB2 94 3 VSS 50 VSS 95 4 DQ1 51 CB3 96 5 DQS0 52 BA1 97 6 DQ2 KEY 98 7 VDD 53 DQ32 99 8 DQ3 54 VDDQ 100 9 NC 55 DQ33 101 10 RESET 56 DQS4 102 11 VSS 57 DQ34 103 12 DQ8 58 VSS 104 13 DQ9 59 BA0 105 14 DQS1 60 DQ35 106 15 VDDQ 61 DQ40 107 16 DU 62 VDDQ 108 17 DU 63 WE 109 18 VSS 64 DQ41 110 19 DQ10 65 CAS 111 20 DQ11 66 VSS 112 21 CKE0 67 DQS5 113 22 VDDQ 68 DQ42 114 23 DQ16 69 DQ43 115 24 DQ17 70 VDD 116 25 DQS2 71 NC 117 26 VSS 72 DQ48 118 27 A9 73 DQ49 119 28 DQ18 74 VSS 120 29 A7 75 DU 121 30 VDDQ 76 DU 122 31 DQ19 77 VDDQ 123 32 A5 78 DQS6 124 33 DQ24 79 DQ50 125 34 VSS 80 DQ51 126 35 DQ25 81 VSS 127 36 DQS3 82 VDDID 128 37 A4 83 DQ56 129 38 VDD 84 DQ57 130 39 DQ26 85 VDD 131 40 DQ27 86 DQS7 132 41 A2 87 DQ58 133 42 VSS 88 DQ59 134 43 A1 89 VSS 135 44 CB0 90 NC 136 45 CB1 91 SDA 137 46 VDD 92 SCL 138 47 DQS8 139 Note: A12 is used for 256Mbit and 512Mbit based modules only INFINEON Technologies 4 Symbol VSS DQ4 DQ5 VDDQ DM0/DQS9 DQ6 DQ7 VSS NC NC NC VDDQ DQ12 DQ13 DM1/DQS10 VDD DQ14 DQ15 CKE1 VDDQ NC DQ20 NC / A12 VSS DQ21 A11 DM2/DQS11 VDD DQ22 A8 DQ23 VSS A6 DQ28 DQ29 VDDQ DM3/DQS12 A3 DQ30 VSS DQ31 CB4 CB5 VDDQ CK0 CK0 VSS 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Symbol DM8/DQS17 A10 CB6 VDDQ CB7 KEY VSS DQ36 DQ37 VDD DM4/DQS13 DQ38 DQ39 VSS DQ44 RAS DQ45 VDDQ CS0 CS1 DM5/DQS14 VSS DQ46 DQ47 NC VDDQ DQ52 DQ53 NC VDD DM6/DQS15 DQ54 DQ55 VDDQ NC DQ60 DQ61 VSS DM7/DQS16 DQ62 DQ63 VDDQ SA0 SA1 SA2 VDDSPD 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules RS0 DQS0 DM0/DQS9 DQS4 DM4/DQS13 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D0 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D2 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 DM I/O 7 I/O 6 I/O 1 I/O 0 I/O 5 I/O 4 I/O 3 I/O 2 RAS CAS CKE0 WE PCK PCK DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D5 CS DQS D6 CS DQS D3 CS DQS D7 VDDSPD EEPROM VDD, V DDQ D0 - D8 VREF D0 - D8 Serial PD R E G I S T E R A0-A12 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQS DQS7 DM7/DQS16 DQS8 DM8/DQS17 CS0 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D4 DQS6 DM6/DQS15 DQS3 DM3/DQS12 BA0-BA1 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 CS DQS DQS2 DM2/DQS11 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS5 DM5/DQS14 DQS1 DM1/DQS10 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQS CS D0 - D8 DQS SDA SCL D8 A0 A1 A2 V DDID RS0 -> CS : SDRAMs D0-D8 D0 - D8 Strap: see Note 4 Notes: RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ RA0-RA12 -> A0-A12: SDRAMs D0 - D8 RRAS -> RAS : SDRAMs D0 - D8 RCAS -> CAS : SDRAMs D0 - D8 RCKE0 -> CKE: SDRAMs D0 - D8 RWE -> WE : SDRAMs D0 - D8 CK0, CK 0 --------- PLL* RESET V SS SA0 SA1 SA2 5. SDRAM placement alternates between the back and front of the DIMM. * Wire per Clock Loading Table/Wiring Diagrams Block Diagram: One Bank 32M x 72 DDR-I SDRAM DIMM Module (x8 components) HYS72D32500GR on Raw Card L INFINEON Technologies 5 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules VSS RS0B RS0A DQS0 DM0/DQS9 DQS DQ0 DQ1 DQ2 DQ3 I/O I/O I/O I/O DQ8 DQ9 DQ10 DQ11 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ16 DQ17 DQ18 DQ19 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ24 DQ25 DQ26 DQ27 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ32 DQ33 DQ34 DQ35 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ40 DQ41 DQ42 DQ43 CS DQ48 DQ49 DQ50 DQ51 DQS I/O 0 I/O 1 I/O 2 I/O 3 0 1 2 3 DM CS DQ4 DQ5 DQ6 DQ7 D0 DQS CS I/O 0 I/O 1 D9 I/O 2 I/O 3 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DM DM1/DQS10 DQS1 DM CS DQ12 DQ13 DQ14 DQ15 D1 DQS2 CS D10 DM2/DQS11 DQS DM DQ20 DQ21 DQ22 DQ23 D2 DQS3 CS I/O 0 I/O 1 I/O 2 I/O 3 D11 DQS I/O 0 I/O 1 I/O 2 I/O 3 D12 DQS CS DM DM3/DQS12 DM DQ28 DQ29 DQ30 DQ31 D3 DQS4 DM4/DQS13 DM DQ36 DQ37 DQ38 DQ39 D4 DQS5 DM DM5/DQS14 DQ44 DQ45 DQ46 DQ47 D5 DQS6 DM6/DQS15 DM DQ52 DQ53 DQ54 DQ55 D6 DQS7 I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM DM D13 VDDSPD EEPROM VDD, VDDQ D0 - D17 VREF D0 - D17 V SS CS DM D0 - D17 V DDID Strap: see Note 4 D14 Serial PD CS DQS I/O 0 I/O 1 D15 I/O 2 I/O 3 DM SDA SCL A0 A1 A2 SA0 SA1 SA2 DM7/DQS16 DQS DQ56 DQ57 DQ58 DQ59 DQS8 I/O I/O I/O I/O CS0 WE PCK PCK R E G I S T E R CS DM DQ60 DQ61 DQ62 DQ63 D7 DQS I/O 0 I/O 1 I/O 2 I/O 3 CB0 CB1 CB2 CB3 BA0-BA1 A0-A11,A12 RAS CAS CKE0 0 1 2 3 CS DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DM8/DQS17 D8 CB4 CB5 CB6 CB7 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM Notes: D16 CS D17 DM 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM. RS 0 -> CS : SDRAMs D0-D17 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17 RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17 RRAS -> RAS : SDRAMs D0 - D17 RCAS -> CAS : SDRAMs D0 - D17 RCKE0A -> CKE: SDRAMs D0 - D8 RCKEB -> CKE: SDRAMs D9 - D17 CK0, CK 0 --------- PLL* RWE -> WE : SDRAMs D0 - D17 * Wire per Clock Loading Table/Wiring Diagrams RESET Block Diagram: One Bank 64M x 72 DDR-I SDRAM DIMM Modules (x4 comp.) HYS72D64500GR on Raw Card M INFINEON Technologies 6 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules V SS RS1 RS0 DQS0 DM0/DQS9 DQ0 DQ1 DQ2 DQ3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQ8 DQ9 DQ10 DQ11 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM CS D0 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM CS DQ4 DQ5 DQ6 DQ7 D18 DQS1 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D9 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D27 DM1/DQS10 CS DM D1 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM DQ12 DQ13 DQ14 DQ15 D19 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D10 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D28 DM2/DQS11 DQS2 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ16 DQ17 DQ18 DQ19 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ24 DQ25 DQ26 DQ27 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ32 DQ33 DQ34 DQ35 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ40 DQ41 DQ42 DQ43 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ48 DQ49 DQ50 DQ51 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ56 DQ57 DQ58 DQ59 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS CB0 CB1 CB2 CB3 DM D2 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM DQ20 DQ21 DQ22 DQ23 D20 DQS3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D11 DQS I/O 0 I/O 1 I/O 2 I/O 3 D29 DQS I/O 0 I/O 1 I/O 2 I/O 3 D30 CS DM DM3/DQS12 DM D3 DM DQ28 DQ29 DQ30 DQ31 D21 DQS4 DM4/DQS13 DM D4 DM DQ36 DQ37 DQ38 DQ39 D22 DQS5 DM D5 DM5/DQS14 DM DQ44 DQ45 DQ46 DQ47 D23 DQS6 DM D6 DM6/DQS15 DM DQ52 DQ53 DQ54 DQ55 D24 DQS7 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS CS I/O 0 I/O 1 I/O 2 I/O 3 D7 DM DQ60 DQ61 DQ62 DQ63 D25 DQS8 D8 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 CB4 CB5 CB6 CB7 D26 CK0, CK 0 --------- PLL* DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 Serial PD I/O 0 I/O 1 I/O 2 I/O 3 S DQS DM D14 CS DM D15 CS DM CS DM D17 CS CS S D32 DQS I/O 0 I/O 1 I/O 2 I/O 3 D33 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM DM D31 I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 D16 DM8/DQS17 DM DQS DM D13 DM7/DQS16 DM DM D12 CS CS DM DM DM D34 CS DM D35 V DDSPD EEPROM * Wire per Clock Loading Table/Wiring Diagrams SDA CS0 RS0 -> CS : SDRAMs D0-D17 CS1 BA0-BA1 A0-A12 RAS CAS CKE0 CKE1 WE PC K PC K R E G I S T E R SCL A0 A1 A2 RS1 -> CS : SDRAMs D18 -D35 SA0 SA1 SA2 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D35 VDD,VDDQ D0 - D35 VREF D0 - D35 V SS RA0-RA12 -> A0-A12: SDRAMs D0 - D35 RRAS -> RAS : SDRAMs D0 - D35 RCAS -> CAS : SDRAMs D0 - D35 Notes: D0 - D35 V DDID Strap: see Note 4 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ RCKE0 -> CKE: SDRAMs D0 - D17 RCKE1 -> CKE: SDRAMs D18 - D35 RWE -> WE : SDRAMs D0 - D35 RESET 5. SDRAM placement alternates between the back and front of the DIMM. Block Diagram: Two Bank 128M x 72 and DDR-I SDRAM DIMM Modules (x4 comp.) HYS72D128520GR on Raw Card N INFINEON Technologies 7 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Absolute Maximum Ratings Parameter Symbol Limit Values min. max. Unit Input / Output voltage relative to VSS VIN, VOUT – 0.5 3.6 V Power supply voltage on VDD /VDDQ to VSS VDD, VDDQ – 0.5 3.6 V Storage temperature range TSTG -55 +150 o Power dissipation (per SDRAM component) PD – 1 W Data out current (short circuit) IOS – 50 mA C Permanent device damage may occur if “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to recommended operation conditions. Exposure to higher than recommended voltage for extended periods of time affect device reliability Supply Voltage Levels Parameter Symbol Limit Values Unit Notes min. nom. max. Device Supply Voltage VDD 2.3 2.5 2.7 V - Output Supply Voltage VDDQ 2.3 2.5 2.7 V 1) Input Reference Voltage VREF 0.49 x VDDQ 0.5 x VDDQ 0.51 x VDDQ V 2) Termination Voltage VTT VREF – 0.04 VREF VREF + 0.04 V 3) EEPROM supply voltage VDDSPD 2.3 2.5 3.6 V 1 Under all conditions, VDDQ must be less than or equal to VDD 2 Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC). VREF is also expected to track noise variations in VDDQ . 3 VTT of the transmitting device must track VREF of the receiving device. DC Operating Conditions (SSTL_2 Inputs) (VDDQ = 2.5 V, TA = 70 °C, Voltage Referenced to VSS) Parameter Symbol Limit Values Unit Notes VDDQ + 0.3 V 1) min. max. DC Input Logic High VIH (DC) VREF + 0.15 DC Input Logic Low VIL (DC) – 0.30 VREF – 0.15 V – Input Leakage Current IIL –5 5 µA 1) Output Leakage Current IOL –5 5 µA 2) 1) The relationship between the VDDQ of the driving device and the VREF of the receiving device is what determines noise margins. However, in the case of VIH (max) (input overdrive), it is the VDDQ of the receiving device that is referenced. In the case where a device is implemented such that it supports SSTL_2 inputs but has no SSTL_2 outputs (such as a translator), and therefore no VDDQ supply voltage connection, inputs must tolerate input overdrive to 3.0 V (High corner VDDQ + 300 mV). 2) For any pin under test input of 0 V ≤ VIN ≤ VDDQ + 0.3 V. Values are shown per DDR-SDRAM component. INFINEON Technologies 8 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Operating, Standby and Refresh Currents (-8: PC1600) 256MB x72 1bank -8 512MB x72 1bank -8 1GB x72 2bank -8 MAX MAX MAX 810 1620 2430 mA 1, 4 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. 900 1800 2610 mA 1, 3, 4 IDD2P Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE <= VIL MAX; tCK = tCK MIN 63 126 252 mA 2, 4 IDD2F Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle; CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. 315 630 1260 mA 2, 4 IDD2Q Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle; CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM. 198 396 792 mA 2, 4 IDD3P Active Power-Down Standby Current: one bank active; power-down mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM. 144 288 576 mA 2, 4 IDD3N Active Standby Current: one bank active; active / precharge;CS >= VIH MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle 405 810 1620 mA 2, 4 IDD4R Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA 855 1710 2520 mA 1, 3, 4 IDD4W Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN 945 1890 2700 mA 1, 4 Symbol Parameter/Condition IDD0 Operating Current: one bank; active / precharge; tRC = tRC MIN; tCK = tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles IDD1 Unit Notes 5 IDD5 Auto-Refresh Current: tRC = tRFC MIN, distributed refresh 1530 3060 3870 mA 1, 4 IDD6 Self-Refresh Current: CKE <= 0.2V; external clock on; tCK = tCK MIN 22,5 45 90 mA 2, 4 IDD7 Operating Current: four bank; four bank interleaving with BL=4; Refer to the following page for detailed test conditions. 1890 3780 4590 mA 1, 3, 4 1. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank) 2. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) 2 * n * IDDx[component] for two bank modules (n: number of components per module bank) 3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions 4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents 5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C INFINEON Technologies 9 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Operating, Standby and Refresh Currents (-7: PC2100) 256MB x72 1bank -7 512MB x72 1bank -7 1GB x72 2bank -7 Unit Notes Symbol Parameter/Condition MAX MAX MAX IDD0 Operating Current: one bank; active / precharge; tRC = tRC MIN; tCK = tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles 900 1800 2790 mA 1, 4 IDD1 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. 990 1980 2970 mA 1, 3, 4 IDD2P Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE <= VIL MAX; tCK = tCK MIN 72 144 288 mA 2, 4 IDD2F Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle; CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. 360 720 1440 mA 2, 4 Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle; IDD2Q CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM. 225 450 900 mA 2, 4 5 IDD3P Active Power-Down Standby Current: one bank active; power-down mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM. 162 324 648 mA 2, 4 IDD3N Active Standby Current: one bank active; active / precharge;CS >= VIH MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle 495 990 1980 mA 2, 4 IDD4R Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA 1035 2070 3060 mA 1, 3, 4 IDD4W Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN 1125 2250 3240 mA 1, 4 IDD5 Auto-Refresh Current: tRC = tRFC MIN, distributed refresh 1620 3240 4230 mA 1, 4 IDD6 Self-Refresh Current: CKE <= 0.2V; external clock on; tCK = tCK MIN 23 45 90 mA 2, 4 IDD7 Operating Current: four bank; four bank interleaving with BL=4; Refer to the following page for detailed test conditions. 2025 4050 5040 mA 1, 3, 4 1. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank) 2. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) 2 * n * IDDx[component] for two bank modules (n: number of components per module bank) 3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions 4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents 5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C INFINEON Technologies 10 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Operating, Standby and Refresh Currents (-7F: PC2100) 256MB x72 1bank -7F 512MB x72 1bank -7F 1GB x72 2bank -7F Unit Notes Symbol Parameter/Condition MAX MAX MAX IDD0 Operating Current: one bank; active / precharge; tRC = tRC MIN; tCK = tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles 990 1980 2970 mA 1, 4 IDD1 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. 1080 2160 3150 mA 1, 3, 4 IDD2P Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE <= VIL MAX; tCK = tCK MIN 72 144 288 mA 2, 4 IDD2F Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle; CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. 360 720 1440 mA 2, 4 Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle; IDD2Q CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM. 225 450 900 mA 2, 4 5 IDD3P Active Power-Down Standby Current: one bank active; power-down mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM. 162 324 648 mA 2, 4 IDD3N Active Standby Current: one bank active; active / precharge;CS >= VIH MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle 495 990 1980 mA 2, 4 IDD4R Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA 1035 2070 3060 mA 1, 3, 4 IDD4W Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN 1125 2250 3240 mA 1, 4 IDD5 Auto-Refresh Current: tRC = tRFC MIN, distributed refresh 1620 3240 4230 mA 1, 4 IDD6 Self-Refresh Current: CKE <= 0.2V; external clock on; tCK = tCK MIN 23 45 90 mA 2, 4 IDD7 Operating Current: four bank; four bank interleaving with BL=4; Refer to the following page for detailed test conditions. 2025 4050 5040 mA 1, 3, 4 1. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank) 2. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) 2 * n * IDDx[component] for two bank modules (n: number of components per module bank) 3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions 4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents 5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C INFINEON Technologies 11 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Electrical Characteristics & AC Timing for DDR-I components (for reference only) (0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5V ± 0.2V; VDD = 2.5V ± 0.2V) Symbol tAC tDQSCK DDR266F -7F Parameter DDR266A -7 DDR200 -8 Unit Notes + 0.8 ns 1-4 + 0.8 ns 1-4 Min Max Min Max Min Max DQ output access time from CK/CK − 0.75 + 0.75 − 0.75 + 0.75 − 0.8 DQS output access time from CK/CK − 0.75 + 0.75 − 0.75 + 0.75 − 0.8 tCH CK high-level width 0.45 0.55 0.45 0.55 0.45 0.55 tCK 1-4 tCL CK low-level width 0.45 0.55 0.45 0.55 0.45 0.55 tCK 1-4 tHP Clock Half Period tCK tCK CL = 2.5 Clock cycle time CL = 2.0 min (t CL, tCH) min (tCL, tCH) min (t CL, tCH) ns 1-4 7 12 7 12 8 12 ns 1-4 7.5 12 7.5 12 10 12 ns 1-4 tDH DQ and DM input hold time 0.5 0.5 0.6 ns 1-4 tDS DQ and DM input setup time 0.5 0.5 0.6 ns 1-4 tIPW Control and Addr. input pulse width (each input) 2.2 2.2 2.5 ns 1, 10 tDIPW DQ and DM input pulse width (each input) 1.75 ns 1-4,11 tHZ Data-out high-impedence time from CK/CK − 0.75 + 0.75 − 0.75 + 0.75 − 0.8 + 0.8 ns 1-4, 5 tLZ Data-out low-impedence time from CK/CK − 0.75 + 0.75 − 0.75 + 0.75 − 0.8 + 0.8 ns 1-4, 5 0.75 1.25 0.75 1.25 0.75 1.25 tCK 1-4 1.75 2 tDQSS Write command to 1st DQS latching transition tDQSQ DQS-DQ skew (for DQS & associated DQ signals) + 0.5 + 0.5 + 0.6 ns 1-4 tQHS Data hold skew factor + 0.75 + 0.75 + 1.0 ns 1-4 tQH Data Output hold time from DQS tDQSL,H DQS input low (high) pulse width (write cycle) tHP-tQHS tHP-t QHS tHP-tQHS ns 1-4 0.35 0.35 0.35 tCK 1-4 1-4 tDSS DQS falling edge to CK setup time (write cycle) 0.2 0.2 0.2 tCK tDSH DQS falling edge hold time from CK (write cycle) 0.2 0.2 0.2 tCK 1-4 tMRD Mode register set command cycle time 14 14 16 ns 1-4 tWPRES Write preamble setup time tWPST Write postamble 0.40 tWPRE Write preamble 0.25 0.25 0.9 0.9 tIS tIH Address and control input setup time 0 fast slew rate 0 0.60 0.40 0 0.60 ns 1-4, 7 tCK 1-4, 6 0.25 tCK 1-4 1.1 ns 0.40 0.60 slow slew rate 1.0 1.0 1.1 ns fast slew rate 0.9 0.9 1.1 ns 2-4, 10,11 Address and control input hold time slow slew rate 1.0 1.0 1.1 ns tRPRE Read preamble 0.9 1.1 0.9 1.1 0.9 1.1 tCK 1-4 tRPST Read postamble 0.40 0.60 0.40 0.60 0.40 0.60 tCK 1-4 tRAS Active to Precharge command 45 120,000 45 120,000 50 120,000 ns 1-4 tRC Active to Active/Auto-refresh command period 60 65 70 ns 1-4 tRFC Auto-refresh to Active/Auto-refresh command period 75 75 80 ns 1-4 tRCD Active to Read or Write delay 15 20 20 ns 1-4 tRP Precharge command period 15 20 20 ns 1-4 tRRD Active bank A to Active bank B command 15 15 15 ns 1-4 INFINEON Technologies 12 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Electrical Characteristics & AC Timing for DDR-I components (for reference only) (0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5V ± 0.2V; VDD = 2.5V ± 0.2V) Symbol DDR266F -7F Parameter Min tWR Write recovery time tDAL Auto precharge write recovery + precharge time Max 15 DDR266A -7 Min Max 15 (twr/tck) + (trp/ tck) DDR200 -8 Min Unit Notes Max 15 (twr/tck) + (trp/tck) ns 1-4 tCK 1-4,9 tWTR Internal write to read command delay 1 1 1 tCK 1-4 tXSNR Exit self-refresh to non-read command 75 75 80 ns 1-4 tXSRD Exit self-refresh to read command 200 200 200 tCK 1-4 tREFI Average Periodic Refresh Interval 7.8 256Mb based 7.8 7.8 µs 1-4, 8 1. Input slew rate >=1V/ns for DDR266 and = 1V/ns for DDR200. 2. The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are >= 1.0 V/ns. 3. Inputs are not recognized as valid until VREF stabilizes. 4. The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (Note 3) is VTT. 5. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 6. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 7. The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 8. A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device. 9. For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 10. These parameters guarantee device timing, but they are not necessarily tested on each device 11. Fast slew rate >= 1.0 V/ns , slow slew rate >= 0.5 V/ns and < 1V/ns for command/address and CK & CK slew rate >1.0 V/ns, measured between VOH(ac) and VOL(ac) INFINEON Technologies 13 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules SPD Codes Byte# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 256MB 256MB 256MB 512MB 512MB 512MB x72 x72 x72 x72 x72 x72 1bank 1bank 1bank 1bank 1bank 1bank -7F -7 -8 -7F -7 -8 HEX HEX HEX HEX HEX HEX 80 80 80 80 80 80 08 08 08 08 08 08 07 07 07 07 07 07 0D 0D 0D 0D 0D 0D 0A 0A 0A 0B 0B 0B 01 01 01 01 01 01 48 48 48 48 48 48 00 00 00 00 00 00 04 04 04 04 04 04 70 70 80 70 70 80 75 75 80 75 75 80 02 02 02 02 02 02 82 82 82 82 82 82 08 08 08 04 04 04 08 08 08 04 04 04 Description Number of SPD Bytes Total Bytes in Serial PD Memory Type Number of Row Addresses Number of Column Addresses Number of DIMM Banks Module Data Width Module Data Width (cont’d) Module Interface Levels SDRAM Cycle Time at CL = 2.5 Access Time from Clock at CL = 2.5 DIMM Config Refresh Rate/Type SDRAM Width, Primary Error Checking SDRAM Data Width Minimum Clock Delay for Back-to-Back Random Column Address Burst Length Supported Number of SDRAM Banks Supported CAS Latencies CS Latencies WE Latencies SDRAM DIMM Module Attributes 22 SDRAM Device Attributes: General 23 24 25 26 27 28 29 30 31 32 33 34 35 36-40 41 42 43 44 45 46-61 62 63 64 Min. Clock Cycle Time at CAS Latency = 2 Access Time from Clock for CL = 2 Minimum Clock Cycle Time at CL = 1.5 Access Time from Clock at CL = 1.5 Minimum Row Precharge Time Minimum Row Act. to Row Act. Delay tRRD Minimum RAS to CAS Delay tRCD Minimum RAS Pulse Width tRAS Module Bank Density (per bank) Addr. and Command Setup Time Addr. and Command Hold Time Data Input Setup Time Data Input Hold Time Superset Information Minimum Core Cycle Time tRC Min. Auto Refresh Cmd Cycle Time tRFC Maximum Clock Cycle Time tck Max. DQS-DQ Skew tDQSQ X-Factor tQHS Superset Information SPD Revision Checksum for Bytes 0 - 62 Manufacturers JEDEC ID Code 128 256 DDR-SDRAM 13 10 / 11 1/2 x72 0 SSTL_2.5 7ns / 8ns 0.75ns / 0.8ns ECC Self-Refresh, 7.8ms x8 / x4 na 1GB x72 2bank -7 HEX 80 08 07 0D 0B 02 48 00 04 70 75 02 82 04 04 1GB x72 2bank -8 HEX 80 08 07 0D 0B 02 48 00 04 80 80 02 82 04 04 tccd = 1 CLK 01 01 01 01 01 01 01 01 01 2, 4 & 8 4 CAS latency = 2 & 2.5 CS latency = 0 Write latency = 1 registered Concurrent Auto Precharge 7.5ns / 10ns 0.75ns / 0.8ns not supported not supported 20ns 15ns 20ns 45ns / 50ns 256MByte / 512MByte 0.9ns / 1.1ns 0.9ns / 1.1ns 0.5ns / 0.6ns 0.5ns / 0.6ns – 65ns / 70ns 75ns / 80ns 12ns 0.5ns / 0.6ns 0.75ns / 1.0ns – Revision 0.0 – – 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 0E 04 0C 01 02 26 C0 C0 C0 C0 C0 C0 C0 C0 C0 75 75 00 00 3C 3C 3C 2D 40 90 90 50 50 00 3C 4B 30 32 75 00 00 9D C1 INFINEON 75 75 00 00 50 3C 50 2D 40 90 90 50 50 00 41 4B 30 32 75 00 00 CA C1 INFINEON A0 80 00 00 50 3C 50 32 40 B0 B0 60 60 00 46 50 30 3C A0 00 00 BF C1 INFINEON 75 75 00 00 3C 3C 3C 2D 80 90 90 50 50 00 3C 4B 30 32 75 00 00 D6 C1 INFINEON 75 75 00 00 50 3C 50 2D 80 90 90 50 50 00 41 4B 30 32 75 00 00 03 C1 INFINEON A0 80 00 00 50 3C 50 32 80 B0 B0 60 60 00 46 50 30 3C A0 00 00 F8 C1 INFINEON 75 75 00 00 3C 3C 3C 2D 80 90 90 50 50 00 3C 4B 30 32 75 00 00 D7 C1 INFINEON 75 75 00 00 50 3C 50 2D 80 90 90 50 50 00 41 4B 30 32 75 00 00 04 C1 INFINEON A0 80 00 00 50 3C 50 32 80 B0 B0 60 60 00 46 50 30 3C A0 00 00 F9 C1 INFINEON 65-71 Manufacturer – 72 73-90 91-92 93-94 95-98 99-127 Module Assembly Location Module Part Number Module Revision Code Module Manufacturing Date Module Serial Number – – – – – – – 128-255 open for Customer use – INFINEON Technologies 1GB x72 2bank -7F HEX 80 08 07 0D 0B 02 48 00 04 70 75 02 82 04 04 14 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Package Outlines Raw Card L Module Package DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card L 256MB (one physical bank, 9 components) 133.35 +- 0.15 4.0 max. 4.0 Register 2.3 typ. 1.2" / 30.4 max. Front View Register PLL 52 pin 1 92 53 64.77 1.27 -+ 0.1 49.53 2.3 typ. 6.62 Backside View 144 145 184 2.5D 10.0 17.80 pin 93 3 3 *) on ECC modules only Detail of Contacts B 6.35 2.5 -+ 0.20 0.20 +- 0.15 Detail of Contacts A 3.8 typ. 0.9R 1+- 0.05 1.27 1.8 2.175 L-DIM-184-13 Raw Card L Reg. 1U note: all outline dimensions and tolerances are in accordance with the JEDEC standard INFINEON Technologies 15 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Package Outlines Raw Card M Module Package DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card M 512 MB (one physical bank, 18 components) 133.35 -+ 0.15 4.0 max. 4.0 PLL 2.3 typ. 1.2" / 30.4 max. Front View 53 52 pin 1 92 64.77 1.27 -+ 0.1 49.53 2.3 typ. 6.62 Backside View 144 145 Register 10.0 17.80 pin 93 184 2.5D Register 3 3 *) on ECC modules only Detail of Contacts B 6.35 2.5 +- 0.20 0.20 -+ 0.15 Detail of Contacts A 3.8 typ. 0.9R 1 -+ 0.05 1.27 1.8 2.175 L-DIM-184-12 Raw Card M Reg. 1U note: all outline dimensions and tolerances are in accordance with the JEDEC standard INFINEON Technologies 16 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Package Outlines Raw Card with stacked components Module Package DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card N 1GB (two physical banks, 36 components) 133.35 -+ 0.15 6.8 max. 4.0 PLL 2.3 typ. 1.2" / 30.4 max. Front View 52 pin 1 92 53 64.77 1.27 -+ 0.1 49.53 2.3 typ. 6.62 Backside View 144 145 Register 10.0 17.80 pin 93 184 2.5D Register 3 3 *) on ECC modules only Detail of Contacts B 6.35 2.5 +- 0.20 0.20 -+ 0.15 Detail of Contacts A 3.8 typ. 0.9R 1 +- 0.05 1.27 1.8 2.175 L-DIM-184-14 Raw Card Reg. 1U note: all outline dimensions and tolerances are in accordance with the JEDEC standard INFINEON Technologies 17 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules APPLICATION NOTE: Power Up and Power Management on DDR Registered DIMMs (according to JEDEC ballot JC-42.5 Item 1173) 184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up and to minimize power consumption during low power mode. One feature is externally controlled via a systemgenerated RESET signal; the second is based on module detection of the input clocks. These enhancements permit the modules to power up with SDRAM outputs in a High-Z state (eliminating risk of high current dissipations and/or dotted I/Os), and result in the powering-down of module support devices (registers and PhaseLocked Loop) when the memory is in Self-Refresh mode. The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other SDRAM inputs are maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low level, all the register outputs are forced to a low level, and all differential register input receivers are powered down, resulting in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven from the system as an asynchronous signal according to the attached details. Using this function also permits the system and DIMM clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs stay in Self Refresh mode. The function for RESET is as follows: Register Outputs Register Inputs RESET CK CK Data in (D) Data out (Q) H Rising Falling H H H Rising Falling L L H L or H L or H X Qo H High Z High Z X Illegal input conditions L X or Hi-Z X or Hi-Z X or Hi-Z L X : Don’t care, Hi-Z : High Impedance, Qo: Data latched at the previous of CK risning and CK falling As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are maintained low at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low maintains a high impedance state on the SDRAM DQ, DQS and DM outputs — where they will remain until activated by a valid ‘read’ cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable. The DDR PLL devices automatically detect clock activity above 20MHz. When an input clock frequency of 20MHz or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operating frequency at which all specifications will be met is 95MHz). If the clock input frequency drops below 20MHz (actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are INFINEON Technologies 18 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules made High-Z, and the differential inputs are powered down — resulting in a total PLL current consumption of less than 1mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it is tied inactive on the DIMM. This application note describes the required and optional system sequences associated with the DDR Registered DIMM 'RESET' function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore not possible to uniquely control CKE to one physical DIMM bank through the use of the RESET pin. Power-Up Sequence with RESET — Required 1. The system sets RESET at a valid low level. This is the preferred default state during power-up. This input condition forces all register outputs to a low state independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable low-level at the DDR SDRAMs. 2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR SDRAMs. 3. Stabilization of Clocks to the SDRAM The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches 20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When a stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior to SDRAM operation. 4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 5. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs must remain stable). 6. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows their clock receivers, data input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDECpproved initialization sequence). Self Refresh Entry (RESET low, clocks powered off) — Optional Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking. Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption (RESET low deactivates register CK and CK, data input receivers, and data output drivers). INFINEON Technologies 19 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules 1. The system applies Self Refresh entry command. (CKE→Low, CS→Low, RAS → Low, CAS→ Low, WE→ High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don’t Cares— with the exception of CKE. 2. The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the registerm inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable lowlevel at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required. 3. The system turns off clock inputs to the DIMM. (Optional) a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Z clock inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address signals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM documentation. b. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register. The deactivate time defines the time in which the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during this operation. 4. The DIMM is in lowest power Self Refresh mode. Self Refresh Exit (RESET low, clocks powered off) — Optional 1. Stabilization of Clocks to the SDRAM. The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches ~20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. 2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs, to be consistent with the state of the register outputs. 3. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, RESET timing relationship to a specific clock edge is not required (during this period, register inputs must remain stable). 4. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry (RESET low, clocks running) — Optional INFINEON Technologies 20 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh, this is an alternate operating mode for these DIMMs. 1. System enters Self Refresh entry command. (CKE→ Low, CS→ Low, RAS→ Low, CAS→ Low, WE→ High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don’t Cares — with the exception of CKE. 2. The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the data and clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs. 3. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes the time in which the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during the operation. 4. The DIMM is in a low power, Self Refresh mode. Self Refresh Exit (RESET low, clocks running) — Optional 1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 2. The system switches RESET to a logic 'high' level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, it does not need to be tied to a particular clock edge (during this period, register inputs must continue to remain stable). 3. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE outputs in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to accept an input signal, is t (ACT ) as specified in the register and DIMM documentation. 4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry/Exit (RESET high, clocks running) — Optional As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification explains in detail the method for entering and exiting Self Refresh for this case. Self Refresh Entry (RESET high, clocks powered off) — Not Permissible In order to maintain a valid low level on the register output, it is required that either the clocks be running and the system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the INFINEON Technologies 21 2002-08-16 (0.91) HYS 72Dxx5xxGR-7F/7/8-B Registered DDR-I SDRAM-Modules sequence defined in this application note. In the case where RESET remains high and the clocks are powered off, the PLL drives a High-Z clock input into the register clock input. Without the low level on RESET an unknown DIMM state will result. INFINEON Technologies 22 2002-08-16 (0.91)