N EW ILD256 FEATURES • Each Channel: Guaranteed CTR Symmetry, 2:1 Maximum • Bidirectional AC Input • Industry Standard SOIC-8 Surface Mountable Package • Standard Lead Spacing, .05" • Available in Tape and Reel Option (Conforms to EIA Standard 481-2) DESCRIPTION DUAL AC INPUT PHOTOTRANSISTOR SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER Dimensions in inches (mm) .120±.002 (3.05±.05) .240 (6.10) .004 (.10) .008 (.20) The product is well suited for telecom applications such as ring detection or off/on hook status, given its bidirectional LED input and guaranteed current transfer ratio (CTR) of 20% at IF= 10 mA. .040 (1.02) Package Total Package Dissipation at 25°C Ambient (LED + Detector) ....................................200 mW Derate Linearly from 25°C ......................2.0 mW/°C Storage Temperature................... –55°C to +150°C Operating Temperature ...............–55°C to +100°C Soldering Time at 260°C ............................. 10 sec. 7 E .015±.002 (.38±.05) .008 (.20) .050(1.27) Typ. 6 C 5 E 40° 7° .0585±.002 (1.49±.05) .125±.002 (3.18±.05) 5°Max. R.010 Lead coplanarity (.25) Max. ±.001 Max. .020±.004 (.51±.10) 2 Plcs. Maximum Ratings Detector (Each Channel) Collector-Emitter Breakdown Voltage...............70 V Emitter-Collector Breakdown Voltage.................7 V Power Dissipation ........................................55 mW Derate Linearly from 25°C ....................0.55 mW/°C K/A 2 CL .154±.002 (3.91±.05) A/K 3 K/A 4 .230±.002 (5.84±.05) These circuit elements are constructed with a standard SOIC-8 footprint. Emitter (Each Channel) Continuous Forward Current .........................30 mA Power Dissipation at 25°C............................45 mW Derate Linearly from 25°C ......................0.5 mW/°C 8 C .016 (.41) Pin One I.D. The ILD256 is a dual channel optocoupler. Each channel consists of two infrared emitters connected in anti-parallel and coupled to a silicon NPN phototransistor detector. A/K 1 Characteristics (TA=25°C) Sym Min. Typ. Max. Unit Condition Emitter (Each Channel) Forward Voltage VF 1.2 1.55 V IF=±10 mA Reverse Current IR 0.1 100 mA VR=6.0 V V V IC=10 µA IE=10 µA nA VCE=10 V % IF=±10 mA, VCE=5 V Detector (Each Channel) Breakdown Voltage Collector-Emitter Emitter-Collector Leakage Current, Collector-Emitter BVCEO BVECO 70 7 ICEO 5 50 Package DC Current Transfer CTR Symmetry CTR at + 10 mA 20 0.5 1.0 2.0 CTR at -10 mA Saturation Voltage, Collector-Emitter VCEsat Isolation Voltage, Input to Output VIO IF=±16 mA, IC=2 mA 0.4 2500 VACRMS t=1 min. AUGUST 1995 5–1 Figure 1. LED forward current versus forward voltage Figure 5. Normalized saturated CTR 40 85°C 20 25°C 0 -55°C -20 -40 -60 -1.5 Ta = 25°C Ta = 50°C Ta = 70°C Ta = 100°C 0.8 Normalized CTR IF - LED Forward Current - mA 1.0 60 Vce(sat) = 0.4V 0.6 0.4 Normalized to: If = 10 mA. Vce =10V 0.2 Ta = 25°C -1.0 -0.5 0.0 0.5 1.0 VF - LED Forward Voltage - V 1.5 0.0 .1 Figure 2. Forward voltage versus forward current 1 10 If - LED Current - mA 100 Figure 6. Normalized CTRcb 1.5 1.4 If=10mA, Ta=25°C Normalized CTRcb Vf-Forward Voltage - V Normalized to: 1.3 Ta = -55°C 1.2 1.1 Ta = 25°C 1.0 0.9 Ta = 100°C 1.0 0.5 25°C 50°C 70°C 0.8 0.7 .1 1 10 0.0 .1 100 If - Forward Current - mA 1 10 100 If - LED Current -mA Figure 3. Peak LED current versus duty factor, Tau Figure 7. Photocurrent versus LED current 10000 1000 Duty Factor .005 .01 .02 t τ DF = /t .05 .1 .2 100 10 10-6 .5 10-5 10-4 10-3 10-2 10-1 10 0 100 10 25°C 70°C 1 .1 10 1 .1 t - LED Pulse Duration - s 700 100 Vce=0.4V, Ta=25°C Normalized to : Ta = 25°C Ta = 50°C Ta = 70°C Ta = 100°C 100 Figure 8. Base current versus If and HFE 2.0 600 If = 10 mA, Vce =10V HFE - Transistor Gain Normalized CTR 10 If - LED Current - mA Figure 4. Normalized CTR versus If and Ta 1.5 1 Ta = 25°C 1.0 0.5 500 10 400 1 300 If- LED Current-mA 1000 Icb - Photocurrent - µA If(pk) - Peak LED Current - mA τ 200 0.0 .1 100 1 10 100 1 10 100 .1 1000 Ib - Base Current - µA If - LED Current - mA ILD256 5–2 Figure 9. Normalized HFE versus Ib, Ta Figure 11. Base emitter voltage versus base 1.5 1.2 Normalized to: Normalized to: Ta = 25°C Vce = 10V 0.8 NHFE -20°C NHFE 25°C NHFE 50°C NHFE 70°C 0.6 HFE at Vce = 10V, Icb = 10µA Normalized Saturated HFE Normalized HFE Ib = 10µA 1.0 Ta = 25°C 1.0 0.5 Vce(sat) = 0.4V 0.0 0.4 1 10 100 Ib - Base Current - µA 1000 1 10 100 Figure 12. Collector-emitter leakage current versus temperature 1000 Iceo - Collector-Emitter - nA 10 5 100 10 4 Ta = 25°C 10 3 10 10 2 1 Vce = 10V 10 1 .1 TYPICAL 10 0 .01 .001 0.4 1000 Ib - Base Current - µA Figure 10. Normalized saturated HFE versus Ib Ib - Base Current - µA Ta = -20°C Ta =25°C Ta = 50°C Ta = 70°C 10 -1 0.5 0.6 0.7 10 -2 -20 0.8 Vbe - Base Emitter Voltage - V 0 20 40 60 80 Ta - Ambient Temperature - °C 100 ILD256 5–3