IL256AT AC Input Phototransistor Small Outline Surface Mount Optocoupler FEATURES • Guaranteed CTR Symmetry, 2:1 Maximum • Bidirectional AC Input Industry Standard SOIC-8 Surface • Mountable Package • Standard Lead Spacing, .05" • Available only on Tape and Reel Option (Conforms to EIA Standard RS481A) • Underwriters Lab File #E52744 (Code Letter Y) DESCRIPTION Dimensions in inches (mm) Anode/ Cathode 1 Cathode/ 2 Anode .154 ±.005 CL NC 3 (3.91±.13) .120±.005 (3.05±.13) .240 (6.10) 8 NC 7 Base 6 Collector 5 Emitter NC 4 .016 (.41) Pin One ID .192±.005 (4.88±.13) .015±.002 (.38± .05) .004 (.10) .008 (.20) The IL256A is an AC input phototransistor optocoupler. The device consists of two infrared emitters connected in anti-parallel and coupled to a silicon NPN phototransistor detector. .008 (.20) .050 (1.27) typ. .020±.004 (.51±.10) .021 (.53) 2 plcs. 7° .058±.005 (1.49±.13) 40° .125 ±.005 (3.18 ±.13) 5°max. R.010 (.25) max. Lead Coplanarity ± .0015 (.04) max. These circuit elements are constructed with a standard SOIC-8 foot print. The product is well suited for telecom applications such as ring detection or off/on hook status, given its bidirectional LED input and guaranteed current transfer ratio (CTR) minimum of 20% at IF=10 mA. Maximum Ratings Emitter Continuous Forward Current ...................... 60 mA Power Dissipation at 25°C......................... 90 mW Derate Linearly from 25°C................... 0.8 mW/°C Detector Collector-Emitter Breakdown Voltage............ 30 V Emitter-Collector Breakdown Voltage........... 5.0 V Collector-Base Breakdown Voltage............... 70 V Power Dissipation ................................... 150 mW Derate Linearly from 25°C................... 2.0 mW/°C Package Total Package Dissipation at 25°C Ambient (LED + Detector) ................................. 240 mW Derate Linearly from 25°C.................... 3.2mW/°C Storage Temperature ................ –55°C to +150°C Operating Temperature ............ –55°C to +100°C Soldering Time at 260°C ........................... 10 sec. Characteristics TA=25°C Symbol Min. Typ. Max. Unit Condition VF — 1.2 1.5 V IF=±10 mA BVCEO 30 50 — V IC=1.0 mA BVECO 5.0 10 — V IE=100 µA BVCBO 70 90 — V IC=100 µA ICEO — 5.0 50 nA VCE=10 V DC Current Transfer Ratio CTR 20 — — % IF=±10 mA, VCE=5.0 V Symmetry CTR at +10mA CTR at –10 mA — 0.5 1.0 2.0 — — Saturation Voltage, Collector-Emitter VCEsat — — 0.4 — IF=±16 mA, IC=2.0 mA Isolation Voltage, Input to Output VIO 3000 — — VRMS — Emitter Forward Voltage Detector Breakdown Voltage Leakage Current, Collector-Emitter Package 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 1 April 3, 2000-18 Figure 5. Normalized saturated CTR 1.0 60 40 85°C Normalized CTR 20 25°C 0 -55°C -20 -40 0.8 0.6 0.4 -0.5 0.0 0.5 1.0 1.5 0.0 VF - LED Forward Voltage - V .1 Figure 2. Forward voltage versus forward current TA = -55°C 1.2 TA = 25°C 1.1 1.0 0.9 TA = 100°C 0.8 .1 1 10 IF - Forward Current - mA 10000 1.0 TA = 25°C TA = 50°C TA = 70°C 0.5 .1 1 10 IF - LED Current - mA 1000 τ DF = /t ICB - Photocurrent - µA t 10 10-6 10-5 10-4 10-3 10-2 10-1 100 101 t - LED Pulse Duration - s Figure 4. Normalized CTR versus IF and Ta 25°C 100 70°C 10 1 .1 .1 1 10 IF - LED Current - mA 700 Normalized to: IF = 10 mA, VCE =10V TA = 25°C TA = 25°C TA = 50°C TA = 70°C TA = 100°C HFE - Transistor Gain 0.0 1 10 IF - LED Current - mA 100 VCE=0.4 V, TA=25°C 0.5 .1 100 Figure 8. Base current versus IF and HFE 2.0 1.0 100 Figure 7. Photocurrent versus LED current τ Duty Factor .005 .01 1000 .02 .05 .1 .2 .5 100 Normalized to: IF = 10 mA TA = 25°C 0.0 100 Figure 3. Peak LED current versus duty factor, Tau 1.5 100 1.5 1.3 0.7 If(pk) - Peak LED Current - mA 1 10 IF - LED Current - mA Figure 6. Normalized CTRcb Normalized CTRcb VF - Forward Voltage - V 1.4 Normalized CTR Normalized to: IF = 10 mA, VCE =10 V TA = 25°C 0.2 -60 -1.5 -1.0 VCE(sat) =0.4 V TA = 25°C TA = 50°C TA = 70°C TA = 100°C 100 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 2 600 500 10 400 300 1 200 100 1 10 100 IB - Base Current - µA IF - LED Current - mA IF - LED Forward Current - mA Figure 1. LED forward current versus forward voltage .1 1000 IL256AT April 3, 2000-18 Figure 9. Normalized HFE versus Ib, Ta Figure 11. Base emitter voltage versus base current Normalized to: IB = 10 µA TA = 25°C VCE = 10 V 1.0 NHFE -20°C NHFE 25°C NHFE 50°C NHFE 70°C 0.8 0.6 1000 IB - Base Current - µA Normalized HFE 1.2 0.4 10 100 IB - Base Current - µA Figure 10. Normalized saturated HFE versus Ib Normalized Saturated HFE 1.5 Normalized to: HFE at VCE = 10V, ICB = 10 µA TA = 25°C 1.0 TA = -20°C TA = 25°C TA = 50°C TA = 70°C 0.5 VCE(sat) = 0.4 V 0.0 1 10 100 IB - Base Current - µA 1000 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178 3 TA = 25°C 10 1 .1 .01 .001 0.4 1000 0.5 0.6 0.7 VBE - Base Emitter Voltage - V 0.8 Figure 12. Collector-emitter leakage current versus temperature ICEO - Collector-Emitter - nA 1 100 105 104 103 102 VCE = 10 V 101 Typical 100 10-1 10-2 -20 0 20 40 60 80 100 TA - Ambient Temperature - °C IL256AT April 3, 2000-18