IRF IRFZ46ZLPBF

PD - 95562
IRFZ46ZPbF
IRFZ46ZSPbF
IRFZ46ZLPbF
®
AUTOMOTIVE MOSFET
Features
O
O
O
O
O
O
O
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the
latest processing techniques to achieve extremely
low on-resistance per silicon area. Additional
features of this design are a 175°C junction
operating temperature, fast switching speed and
improved repetitive avalanche rating . These
features combine to make this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of
other applications.
HEXFET Power MOSFET
D
VDSS = 55V
RDS(on) = 13.6mΩ
G
ID = 51A
S
TO-220AB
IRFZ46Z
D2Pak
IRFZ46ZS
TO-262
IRFZ46ZL
Absolute Maximum Ratings
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Parameter
51
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (See Fig. 9)
36
IDM
Pulsed Drain Current
200
PD @TC = 25°C
Maximum Power Dissipation
c
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS
Single Pulse Avalanche Energy (Thermally Limited)
EAS (tested)
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
c
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
i
d
82
W
0.54
± 20
W/°C
V
63
mJ
97
See Fig.12a,12b,15,16
h
A
mJ
°C
-55 to + 175
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Thermal Resistance
Typ.
Max.
Units
RθJC
Junction-to-Case
Parameter
–––
1.84
°C/W
RθCS
Case-to-Sink, Flat, Greased Surface
0.50
–––
RθJA
Junction-to-Ambient
–––
62
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
40
j
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
07/15/04
IRFZ46Z/S/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
Min. Typ. Max. Units
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
55
–––
–––
2.0
45
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
1460
250
130
860
190
310
–––
–––
–––
–––
–––
–––
gfs
IDSS
IGSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
–––
–––
0.053 –––
10.9 13.6
–––
4.0
–––
–––
–––
20
–––
250
–––
200
––– -200
31
46
7.6
11
12
18
13
–––
63
–––
37
–––
39
–––
4.5
–––
V
V/°C
mΩ
V
S
µA
nA
nC
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 31A
VDS = VGS, ID = 250µA
VDS = 25V, ID = 31A
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
ID = 31A
VDS = 44V
VGS = 10V
VDD = 28V
ID = 31A
RG = 15Ω
VGS = 10V
D
Between lead,
f
f
ns
f
nH
6mm (0.25in.)
from package
pF
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
51
ISM
(Body Diode)
Pulsed Source Current
–––
–––
200
showing the
integral reverse
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
1.3
31
24
p-n junction diode.
TJ = 25°C, IS = 31A, VGS = 0V
TJ = 25°C, IF = 31A, VDD = 28V
di/dt = 100A/µs
c
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L =0.13mH,
RG = 25Ω, IAS = 31A, VGS =10V. Part not
recommended for use above this value.
ƒ ISD ≤ 31A, di/dt ≤ 1070A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
„ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
2
MOSFET symbol
A
–––
–––
–––
–––
21
16
V
ns
nC
D
G
S
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
‡ This value determined from sample failure population. 100%
tested to this value in production.
ˆ This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
www.irf.com
IRFZ46Z/S/LPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
10
4.5V
0.1
1
10
4.5V
10
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
1
BOTTOM
1
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
60
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
T J = 175°C
100
T J = 25°C
10
VDS = 15V
20µs PULSE WIDTH
1.0
50
T J = 25°C
40
30
T J = 175°C
20
10
V DS = 10V
0
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
0
10
20
30
40
50
60
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRFZ46Z/S/LPbF
10000
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 31A
C, Capacitance(pF)
Coss = C ds + C gd
Ciss
1000
Coss
Crss
VDS= 44V
VDS= 28V
10.0
VDS= 11V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
0
VDS, Drain-to-Source Voltage (V)
5
10
15
20
25
30
35
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
1000.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.00
T J = 175°C
10.00
1.00
T J = 25°C
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.10
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10msec
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFZ46Z/S/LPbF
55
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
50
ID, Drain Current (A)
45
40
35
30
25
20
15
10
5
0
ID = 31A
VGS = 10V
2.0
1.5
1.0
0.5
25
50
75
100
125
150
-60 -40 -20 0
175
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci= i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.9322 0.000357
0.5533
0.001133
0.3545
0.004091
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFZ46Z/S/LPbF
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
VGS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
300
15V
ID
3.5A
5.0A
BOTTOM 31A
TOP
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
VCC
VGS(th) Gate threshold Voltage (V)
QGS
3.0
ID = 250µA
2.0
1.0
1K
-75 -50 -25
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRFZ46Z/S/LPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
70
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 31A
EAR , Avalanche Energy (mJ)
60
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFZ46Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
-
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFZ46Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
4
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
14.09 (.555)
13.47 (.530)
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- EMITTER
3- SOURCE
4 - DRAIN
HEXFET
1.40 (.055)
1.15 (.045)
4- DRAIN
4- COLLECTOR
4.06 (.160)
3.55 (.140)
0.93 (.037)
3X 0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T H IS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
www.irf.com
P AR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
9
IRFZ46Z/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMB LED ON WW 02, 2000
IN T HE AS S EMB LY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in assembly line
position indicates "Lead-Free"
PART NUMB ER
F530S
AS SEMB LY
LOT CODE
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INT ERNAT IONAL
RE CT IF IE R
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
F 530S
DAT E CODE
P = DE S IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEE K 02
A = AS S E MBLY S IT E CODE
www.irf.com
IRFZ46Z/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBL ED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
Note: "P" in as sembly line
pos ition indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNAT IONAL
RECT IF IER
L OGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S IT E CODE
11
IRFZ46Z/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/04
12
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/