IRF IRS21952STRPBF

IRS21952SPBF
Features
•
•
•
•
•
•
•
2 low side output channels sharing common ground
1 high side output channel
CMOS Schmitt trigger inputs with pull down resistor
Under voltage lockout on all channels
5 V compatible logic level Inputs
Immune to –Vs spike and tolerant to dVs/dt & dVss/dt
Shoot through prevention logic
Descriptions
The IRS21952 contains 2 low side outputs sharing
common ground and 1 high side output. Low side drivers
can tolerate up to -600 V below input signal (VSS: input
supply return). High side driver can tolerate up to 600 V
above low side ground (COM: low side supply return).
The IRS21952 has better propagation delay and thermal
characteristics compared to a photo-coupler driver. The
logic inputs are compatible with standard CMOS or LSTTL
output. Proprietary HVIC and latch-up immune CMOS
technologies enable ruggedized monolithic construction.
HIGH SIDE & DUAL LOW SIDE
DRIVER IC
Product Summary
VOFFSET (low side)
-600 V (VSS)
VOFFSET (high side)
600 V (COM)
VOUT
ton/toff (typ)
Io+/-
10 V to 20 V
330 ns/330 ns
0.5 A/0.5 A
Package
16-Lead SOIC (narrow body)
Typical Connection Diagram
IRS21952SPBF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur.
parameters are absolute voltages referenced to COM.
Symbol
HIN
LIN1
LIN2
VDD
VSS
VB
VS
HO
VCC
LO1
LO2
dVS/dt
dVSS/dt
PD
RθJA
TJ
TS
TL
Definition
Min
Max
Floating logic level input voltage
VSS-0.3
VDD+0.3
Floating logic input supply voltage
Floating logic input supply return voltage
High side floating well supply voltage
High side floating well supply return voltage
High side floating gate drive output voltage
Low side supply voltage
-0.3
VDD-25
-0.3
VB-25
VS-0.3
-0.3
625
VDD+0.3
625
VB+0.3
VB+0.3
25
Low side output voltage
-0.3
VCC+0.3
Allowable VS offset transient relative to earth ground
Allowable VSS offset transient relative to earth ground
Package power dissipation @ TA<=+25 ºC
-55
-55
-
50
50
1
100
150
150
300
Thermal resistance, junction to ambient
Junction temperature
Storage temperature
Lead temperature (soldering, 10 seconds)
All voltage
Units
V
V/ns
V/ns
W
ºC/W
ºC
ºC
ºC
Recommended Operating Conditions
For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute
voltages referenced to COM.
Definition
Symbol
HIN
LIN1
LIN2
VDD
VSS
VB
VS
HO
VCC
LO1
LO2
TA
Note 1:
Floating logic level input voltage
Floating logic input supply voltage
Floating logic input supply return voltage
High side floating well supply voltage
High side floating well supply return voltage
High side floating gate drive output voltage
Low side supply voltage
Low side output voltage
Ambient temperature
Min
Max
VSS
VDD
VSS+4.5
-5
VS+10
-5
VS
10
VSS+5.5
600
VS+20
600
VB
20
0
VCC
-40
125
Units
V
ºC
Logic operation for VS of –5 V to 600 V. Logic state held for VS of –5 V to –VBS. (Please refer to Design Tip
DT97-3 for more details).
2
IRS21952SPBF
Static Electrical Characteristics
(VB-VS)=15 V. The VIN, VIN,TH, VBSUV, VO, IO and IIN parameters are referenced to VS. TA = 25 oC unless otherwise
specified.
Symbol
Definition
Min
Typ
Max Units
VCCUV+
VCC supply undervoltage positive going threshold
7.5
8.6
9.7
VCCUV-
VCC supply undervoltage negative going threshold
7.0
8.2
9.4
VBSUV+
VBS supply undervoltage positive going threshold
7.5
8.6
9.7
VBSUV-
VBS supply undervoltage negative going threshold
7.0
8.2
9.4
VDDUV+
VDD supply undervoltage positive going threshold
3.3
4.1
4.9
VDDUV-
VDD supply undervoltage negative going threshold
2.9
3.7
4.5
ILKVCC
ILKVBS
Offset supply leakage current – both input well
and output well
---
---
50
IQBS
Quiescent VBS supply current
---
70
140
IQDD
Quiescent VDD supply current
---
140
280
IQCC
Quiescent VCC supply current
---
200
400
VIH
Logic “1” input voltage
3.5
---
---
VIL
Logic “0” input voltage
---
---
0.6
VOH
High level output voltage, VBIAS-VO
---
---
0.1
VOL
Low level output voltage, VO
---
---
0.1
IIN+
Logic “1” input bias current
---
2
10
Test Conditions
V
VB = VS = 600 V
VCC = VCOM = 600 V
µA
VIN = 0 V or 5 V
V
Io= 0 A
Io= 0 A
VIN = 5 V
µA
IIN-
Logic “0” input bias current
---
---
5
VIN = 0 V
Io+
Output high short circuit pulsed current
---
0.5
---
VO=0 V,VIN=0 V,
PW<=10 µs
A
Io-
Output low short circuit pulsed current
---
0.5
---
VO=15 V,VIN=5 V,
PW<=10 µs
3
IRS21952SPBF
Dynamic Electrical Characteristics (All values are target data)
(VB-VS)= 15 V. CL = 1000 pF unless otherwise specified. All parameters are reference to COM. TA = 25 oC unless
otherwise specified.
Symbol
ton
toff
tr
tf
MT_on
MT_off
Definition
Turn-on propagation delay of high
and low side
Turn-off propagation delay of high
and low side
Turn-on rise time of high and low
side
Turn-off fall time of high and low
side
Turn on propagation delay
matching
Turn off propagation delay
matching
Min
Typ
Max
Units
---
330
---
VSS=200 V, VS=0 V
---
330
---
VSS=200 V, VS=400 V
---
25
70
ns
Test Conditions
VSS=200 V, VS=0 V
---
25
70
VSS=200 V, VS=400 V
---
---
50
VSS=200 V, VS=0 V
---
---
50
VSS=200 V, VS=400 V
4
IRS21952SPBF
Functional Block Diagram
VB
VDD
UVLO
UVLO
R
HIN
LIN1
Level
Pulse
R
Shift
Filter
S
HO
Q
VS
Down
LIN2
Shoot
Through
Prevention
Logic
VSS
Level
Shift
Up
VCC
UVLO
UVLO
R
R
LO1
Q
R
Pulse
Pulse
R
S
Filter
Filter
S
LO2
Q
COM
5
IRS21952SPBF
Lead Definitions
Symbol
Description
VDD
Input logic supply voltage
HIN
Logic input for high side gate driver
LIN1, LIN2
Logic inputs for low side gate driver
VSS
LO1, LO2
Input logic supply return
Low side outputs
VCC
Low side supply voltage
COM
Low side supply return
HO
High side output
VB
High side floating supply voltage
VS
High side floating supply return
Lead Assignments
6
IRS21952SPBF
Figure 1: Switching Time Waveforms
Shoot Through Prevention Logic
HIN1
1
0
0
1
1
0
1
0
LIN1
0
1
0
1
0
1
1
0
LIN2
0
0
1
0
1
1
1
0
HO1
1
0
0
0
0
0
0
0
LO1
0
1
0
0
0
1
0
0
LO2
0
0
1
0
0
1
0
0
7
800
800
700
700
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IRS21952SPBF
600
500
400
300
Typ.
200
100
600
500
400
Typ.
300
200
100
0
0
-50
-25
0
25
50
75
100
125
10
12
500
400
400
Turn-Off Time (ns)
Turn-Off Time (ns)
500
300
Typ.
100
20
18
20
Typ.
300
200
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
14
16
VBIAS Supply Voltage (V)
o
Figure 3A. Turn-Off Tim e
vs. Tem perature
Figure 3B. Turn-Off Tim e
vs. Supply Voltage
80
Turn-On Rise Time (ns)
80
Turn-On Rise Time (ns)
18
100
0
-50
60
40
20
Typ.
0
-50
16
Figure 2B. Turn-On Tim e
vs. Supply Voltage
Figure 2A. Turn-On Tim e
vs. Tem perature
200
14
VBIAS Supply Voltage (V)
Temperature ( C)
o
60
40
Typ.
20
0
-25
0
25
50
75
100
Temperature ( C)
o
Fiure 4A. Turn-On Rise Tim e
vs.Tem perature
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 4B. Turn-On Rise Tim e
vs. Supply Voltage
8
IRS21952SPBF
80
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
80
60
40
20
Typ.
0
-50
60
40
Typ.
20
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
o
5
5
Input Voltage (V)
Input Voltage (V)
6
4
Mi n.
3
2
1
-50
1
25
50
75
100
Min.
10
125
12
4
4
3
3
Input Voltage (V)
Input Voltage (V)
16
18
20
Figure 6B. Logic "1" Input Voltage
vs. Supply Voltage
Figure 6A. Logic "1" Input Voltage
vs. Tem perature
2
Max.
0
-50
14
Vcc Supply Voltage (V)
Temperature (oC)
1
20
4
2
0
18
Figure 5B. Turn-Off Fall Tim e
vs. Supply Voltage
6
-25
16
VBIAS Supply Voltage (V)
Figure 5A. Turn-Off Fall Tim e
vs. Tem perature
3
14
2
1
Max
0
-25
0
25
50
75
100
Temperature ( oC)
Figure 7A. Logic "0" Input Voltage
vs. Tem perature
125
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 7B. Logic "0" Input Voltage
vs. Supply Voltage
9
IRS21952SPBF
0.5
High Level Output Voltage (V)
High Level Output Voltage (V)
0.5
0.4
0.3
0.2
0.1
Max.
0.0
-50
0.4
0.3
0.2
Max.
0.1
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
20
0.5
Low Level Output Voltage (V)
Low Level Output Voltage (V)
18
Figure 8B. High Level Output
vs. Supply Voltage
0.5
0.4
0.3
0.2
Max.
0
-50
0.4
0.3
0.2
Max.
0.1
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
o
14
16
18
20
Vcc Supply Voltage (V)
Figure 9A. Low Level Output
vs.Tem perature
Figure 9B. Low Level Output
vs. Supply Voltage
500
500
Offset Supply Leakage Current (uA)
Offset Supply Leakage Current (uA)
16
Vcc Supply Voltage (V)
Figure 8A. High Level Output
vs. Tem perature
0.1
14
400
300
200
100
Max.
0
-50
-25
0
25
50
75
Temperature (oC)
100
125
Figure 10A. Offset Supply Leakage Current
vs. Tem perature
400
300
200
100
Max.
0
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 10B. Offset Supply Leakage Current
vs. Supply Voltage
10
IRS21952SPBF
400
VBS Supply Current (uA)
VBS Supply Current (uA)
400
300
200
Max.
100
300
200
100
Max.
Typ.
0
-50
Typ.
0
-25
0
25
50
75
100
125
10
12
800
600
400
Max.
200
Typ.
20
800
600
400
Max.
200
Typ.
0
-50
-25
0
25
50
75
100
0
125
10
Temperature ( C)
o
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 12B. V CC Supply Current
vs. Supply Voltage
Figure 12A. V CC Supply Current
vs. Tem perature
600
600
500
VDD Supply Current (uA)
VDD Supply Current (uA)
18
1000
Vcc Supply Current (uA)
Vcc Supply Current (uA)
1000
400
300
Max.
100
Typ.
0
-50
16
Figure 11B. V BS Supply Current
vs. Supply Voltage
Figure 11A. V BS Supply Current
vs. Tem perature
200
14
VBS Supply Voltage (V)
Temperature ( C)
o
500
400
300
200
Max.
100
Typ.
-25
0
25
50
75
100
Temperature (oC)
Figure 13A. V DD Supply Current
vs. Tem perature
125
0
10
12
14
16
18
20
V DD Supply Voltage (V)
Figure 13B. V DD Supply Current
vs. Supply Voltage
11
IRS21952SPBF
40
Logic "1" Input Current (uA)
Logic "1" Input Current (uA)
40
30
20
10
Max.
30
20
Max.
10
Typ.
Typ.
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
16
18
20
Figure 14B. Logic "1" Input Current
vs. Supply Voltage
Figure 14A. Logic "1" Input Current
vs. Tem perature
10
Logic "0" Input Current (uA)
10
Logic "0" Input Current (uA)
14
Vcc Supply Voltage (V)
o
8
6
Max.
4
2
0
-50
8
6
4
Max.
2
0
-25
0
25
50
75
100
Temperature ( C)
o
Figure 15A. Logic "0" Input Current
vs. Tem perature
125
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 15B. Logic "0" Input Current
vs. Supply Voltage
12
IRS21952SPBF
12
Vcc UVLO Threshold (-) (V)
Vcc UVLO Threshold (+) (V)
12
11
Max.
10
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
11
10
Max
9
Typ.
8
Min.
7
6
-50
125
-25
0
Figure 16. Vcc Undervoltage Threshold (+)
vs. Tem perature
75
100
125
Figure 17. V CC Undervoltage Threshold (-)
vs. Tem perature
12
VBS UVLO Threshold (-) (V)
12
VBS UVLO Threshold (+) (V)
50
Temperature (oC)
Temperature (oC)
11
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
11
10
Max
9
Typ.
8
Min.
7
6
-50
125
-25
0
Temperature (oC)
50
75
100
125
Figure 19. V BS Undervoltage Threshold (-)
vs. Tem perature
7.00
VDD UVLO Threshold (-) (V)
7
6.00
Max.
5.00
Typ.
4.00
Min.
3.00
2.00
1.00
-50
25
Temperature (oC)
Figure 18. V BS Undervoltage Threshold (+)
vs. Tem perature
VDD UVLO Threshold (+) (V)
25
-25
0
25
50
75
100
Temperature ( C)
o
Figure 20. V DD Undervoltage Threshold (+)
vs. Tem perature
125
6
5
4
Max.
Typ.
3
Min.
2
1
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 21. V DD Undervoltage Threshold (-)
vs. Tem perature
13
IRS21952SPBF
1000
Output Source Current (uA)
Output Source Current (uA)
1000
800
Typ.
600
400
200
800
600
400
Typ.
200
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature ( C)
o
16
18
20
V BIAS Supply Voltage (V)
Figure 22B. Output Source Current
vs. Supply Voltage
Figure 22A. Output Source Current
vs. Tem perature
1000
Output Sink Current (uA)
1000
Output Sink Current (uA)
14
800
Typ
600
400
200
0
-50
800
600
Typ.
400
200
0
-25
0
25
50
75
100
125
Temperature (oC)
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 23B. Output Sink Current
vs. Supply Voltage
Figure 23A. Output Sink Current
vs.Tem perature
VS Offset Supply Voltage (V)
0
-2
Typ.
-4
-6
-8
-10
-12
10
12
14
16
18
20
V BS Floating Supply Voltage (V)
Figure 24. Maxim um V S Negative Offset
vs. Supply Voltage
14
IRS21952SPBF
NOTES:
1. DIMENSIONING & TOLERANCING PER ANSI Y14.5W-1982
2. CONTROLLING DIMENSION. MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETER [INCHES]
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AC
5. DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE
6. DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.15
[.006]
16-Lead SOIC (narrow body)
15
IRS21952SPBF
LOADED TAPE FEED DIRECTION
A
B
H
D
F
C
NOTE : CONTROLLING
DIM ENSION IN M M
E
G
CARRIER TAPE DIMENSION FOR
Metric
Code
Min
Max
A
7.90
8.10
B
3.90
4.10
C
15.70
16.30
D
7.40
7.60
E
6.40
6.60
F
10.20
10.40
G
1.50
n/a
H
1.50
1.60
16SOICN
Imperial
Min
Max
0.311
0.318
0.153
0.161
0.618
0.641
0.291
0.299
0.252
0.260
0.402
0.409
0.059
n/a
0.059
0.062
F
D
C
B
A
E
G
H
REEL DIMENSIONS FOR 16SOICN
Metric
Imperial
Code
Min
Max
Min
Max
A
329.60
330.25
12.976
13.001
B
20.95
21.45
0.824
0.844
C
12.80
13.20
0.503
0.519
D
1.95
2.45
0.767
0.096
E
98.00
102.00
3.858
4.015
F
n/a
22.40
n/a
0.881
G
18.50
21.10
0.728
0.830
H
16.40
18.40
0.645
0.724
16
IRS21952SPBF
ORDER INFORMATION
16-Lead SOIC IRS21952SPBF
16-Lead SOIC Tape & Reel IRS21952STRPBF
SO-16N package is MSL3 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at IR’s Web Site http://www.irf.com/
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice
06/22/2007
17