SKW15N120 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 40lower Eoff compared to previous generation • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter - SMPS • NPT-Technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability C G E P-TO-247-3-1 (TO-247AC) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW15N120 VCE IC Eoff Tj 1200V 15A 1.5mJ 150°C Package Ordering Code TO-247AC Q67040-S4281 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V DC collector current IC A TC = 25°C 30 TC = 100°C 15 Pulsed collector current, tp limited by Tjmax ICpul s 52 Turn off safe operating area - 52 VCE ≤ 1200V, Tj ≤ 150°C IF Diode forward current TC = 25°C 32 TC = 100°C 15 Diode pulsed current, tp limited by Tjmax IFpul s 50 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 198 W -55...+150 °C 1) Short circuit withstand time VGE = 15V, 100V≤ VCC ≤1200V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 1) 260 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Jul-02 SKW15N120 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.63 K/W RthJCD 1.5 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case RthJA Thermal resistance, TO-247AC 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 1200 - - 2.5 3.1 3.6 - 3.7 4.3 2.0 2.5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 10 0 0 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 15 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 1 5 A T j =2 5 °C T j =1 5 0° C - 1.75 3 4 Gate-emitter threshold voltage VGE(th) I C = 60 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E =1200V,V G E =0V 5 µA T j =2 5 °C - - 200 T j =1 5 0° C - - 800 - - 100 nA 11 - S pF Gate-emitter leakage current IGES V C E =0V,V G E =20V Transconductance gfs V C E = 20 V , I C = 15 A Input capacitance Ciss V C E = 25 V , - 1250 1500 Output capacitance Coss V G E = 0V , - 155 185 Reverse transfer capacitance Crss f= 1 MH z - 65 80 Gate charge QGate V C C = 96 0 V, I C =1 5 A - 130 175 nC Dynamic Characteristic V G E = 15 V Internal emitter inductance LE TO-247AC - 13 - nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs 10 0 V≤ V C C ≤ 12 0 0 V, T j ≤ 15 0° C - 145 - A measured 5mm (0.197 in.) from case 1) Short circuit collector current 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 2 Jul-02 SKW15N120 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 18 24 - 23 30 - 580 750 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) T j =2 5 °C , V C C = 80 0 V, I C = 1 5 A, V G E = 15 V /0 V , tf R G = 33 Ω, Fall time ns - 22 29 L σ =1 8 0n H, 1) C σ = 4 0p F Energy losses include “tail” and diode reverse recovery. - 1.1 1.5 - 0.8 1.1 - 1.9 2.6 trr T j =2 5 °C , - 65 ns tS V R = 8 00 V , I F = 1 5 A, - tF d i F / d t =6 5 0 A/ µs - Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) mJ Anti-Parallel Diode Characteristic Diode reverse recovery time Diode reverse recovery charge Qrr - 0.5 µC Diode peak reverse recovery current Irrm - 15 A Diode peak rate of fall of reverse recovery current during t F d i r r /d t - 500 A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value Unit min. typ. max. - 38 46 - 30 36 - 652 780 - 31 37 - 1.9 2.3 - 1.5 2.0 - 3.4 4.3 200 ns IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon T j =1 5 0° C V C C = 80 0 V, I C = 15 A , V G E = 15 V /0 V , R G = 33 Ω, 1) Turn-off energy Eoff Total switching energy Ets L σ =1 8 0n H, 1) C σ = 4 0p F Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0° C - tS V R = 8 00 V , I F = 1 5 A, - tF d i F / d t =6 5 0 A/ µs - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time Diode reverse recovery charge Qrr - 2.0 µC Diode peak reverse recovery current Irrm - 23 A Diode peak rate of fall of reverse recovery current during t F d i r r /d t - 140 A/µs 1) Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E. Power Semiconductors 3 Jul-02 SKW15N120 70A 100A Ic tp=2µs 15µs 50A 40A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 60A TC=80°C 30A TC=110°C 20A 10A 50µs 10A 200µs 1A 1ms Ic DC 0A 10Hz 100Hz 1kHz 10kHz 0.1A 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 33Ω) 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35A 200W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 175W 150W 125W 100W 75W 50W 20A 15A 10A 5A 25W 0W 25°C 25A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 50A 50A 40A 40A V G E =17V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKW15N120 15V 30A 13V 11V 9V 20A 7V 10A 0A 0V 1V 2V 3V 4V 5V 6V 9V 20A 7V TJ=+150°C TJ=+25°C TJ=-40°C 10A 7V 9V 11V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 30A 5V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 1V 2V 3V 4V 5V 6V 7V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 40A IC, COLLECTOR CURRENT 13V 11V 0A 0V 7V 50A 0A 3V 15V 30A 10A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 20A V G E =17V 6V 5V IC=30A 4V IC=15A 3V IC=7.5A 2V 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SKW15N120 1000ns 1000ns td(off) t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns td(on) tf 100ns td(on) tf tr tr 10ns 0Ω 10ns 0A 10A 20A 30A 40A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 8600V, VGE = +15V/0V, RG = 3 3Ω, dynamic test circuit in Fig.E ) 6V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE td(off) t, SWITCHING TIMES 50Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E ) 1000ns 100ns td(on) tr tf 10ns -50°C 25Ω 0°C 50°C 100°C max. 4V typ. 3V min. 2V 1V 0V -50°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 3 3 Ω, dynamic test circuit in Fig.E ) Power Semiconductors 5V 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) 6 Jul-02 SKW15N120 5mJ 14mJ *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. Ets* Ets* E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 12mJ 10mJ 8mJ Eon* 6mJ 4mJ Eoff 4mJ 3mJ Eon* 2mJ Eoff 1mJ 2mJ 0mJ 0A 10A 20A 30A 40A 0mJ 0Ω 50A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 3 3 Ω, dynamic test circuit in Fig.E ) 25Ω 50Ω 75Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E ) 4mJ 3mJ Eon* 2mJ Eoff 1mJ 0mJ -50°C 0°C 50°C 100°C D=0.5 Ets* ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 150°C 10 K/W 0.1 0.05 0.02 R,(K/W) 0.09751 0.29508 0.13241 0.10485 -2 10 K/W 0.01 R1 τ, (s) 0.67774 0.11191 0.00656 0.00069 R2 -3 10 K/W 1µs single pulse 10µs 100µs C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 3 3 Ω, dynamic test circuit in Fig.E ) Power Semiconductors 0.2 -1 Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SKW15N120 20V Ciss 15V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 1nF UCE=960V 10V Coss 5V 100pF Crss 0V 0nC 50nC 100nC 150nC 0V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) 10V 20V 30V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 30µs 20µs 10µs 0µs 10V 11V 12V 13V 14V 250A 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 1200V, start at Tj = 25°C) Power Semiconductors 300A 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100V ≤VCE ≤1200V, TC = 25°C, Tj ≤ 150°C) 8 Jul-02 SKW15N120 400ns 2.5µC Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 350ns 300ns 250ns IF=15A 200ns IF=7.5A 150ns 100ns 50ns 0ns 200A/µs 400A/µs 600A/µs 800A/µs 2.0µC IF=15A 1.5µC 1.0µC 0.5µC 0.0µC 200A/µs 1000A/µs d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) IF=7.5A 400A/µs 600A/µs 800A/µs 1000A/µs d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) 30A 20A 15A IF=7.5A 10A 5A 0A 200A/µs 400A/µs 600A/µs 800A/µs 300A/µs IF=7.5A 200A/µs IF=15A 100A/µs 0A/µs 200A/µs 1000A/µs d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) Power Semiconductors OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT IF=15A d i r r /d t, DIODE PEAK RATE OF FALL 400A/µs 25A 400A/µs 600A/µs 800A/µs 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) 9 Jul-02 SKW15N120 50A 3.0V 40A TJ=150°C VF, FORWARD VOLTAGE IF, FORWARD CURRENT IF=30A 2.5V 30A 20A TJ=25°C 2.0V IF=15A 1.5V IF=7.5A 1.0V 10A 0.5V 0A 0V 1V 2V 3V 0.0V 0°C 4V 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature 0 10 K/W D=0.5 0.2 0.1 -1 10 K/W R,(K/W) 0.09709 0.50859 0.36316 0.53106 0.05 0. 0 01 .0 2 ZthJCD, TRANSIENT THERMAL IMPEDANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage R1 single pulse τ, (s)= 0.40049 0.09815 0.00612 0.00045 R2 C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -2 10 K/W 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 10 Jul-02 SKW15N120 dimensions TO-247AC symbol [mm] min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 Q 11 0.0299 max H ∅P Power Semiconductors [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Jul-02 SKW15N120 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH, and stray capacity Cσ =40pF. Figure B. Definition of switching losses Power Semiconductors 12 Jul-02 SKW15N120 Published by Infineon Technologies AG i Gr., Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Jul-02