SKW20N60HS High Speed IGBT in NPT-technology C • 30% lower Eoff compared to previous generation • Short circuit withstand time – 10 µs G E • Designed for operation above 30 kHz • NPT-Technology for 600V applications offers: - parallel switching capability - moderate Eoff increase with temperature - very tight parameter distribution • • • • PG-TO-247-3 High ruggedness, temperature stable behaviour Pb-free lead plating; RoHS compliant Qualified according to JEDEC1 for target applications Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW20N60HS VCE IC Eoff 600V 20 240µJ Tj Marking 150°C K20N60HS Package PG-TO-247-3 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 36 TC = 100°C 20 Pulsed collector current, tp limited by Tjmax ICpuls 80 Turn off safe operating area - 80 VCE ≤ 600V, Tj ≤ 150°C Diode forward current IF TC = 25°C 40 TC = 100°C 20 Diode pulsed current, tp limited by Tjmax IFpuls 80 Gate-emitter voltage static transient (tp<1µs, D<0.05) VGE ±20 ±30 V Short circuit withstand time2) tSC 10 µs Ptot 178 W Operating junction and storage temperature Tj , Tstg -55...+150 °C Time limited operating junction temperature for t < 150h Tj(tl) 175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C 1 2) J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev. 2.3 Sep 08 SKW20N60HS Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.7 K/W RthJCD 1.7 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j = 25°C 2.8 3.15 T j = 150 °C 3.5 4.00 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =500 µA Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V G E = 15 V, I C =20A VGE=0V, IF=20A 1.5 2.0 T j = 150 °C - 1.5 2.0 3 4 5 T j = 25°C Gate-emitter threshold voltage VGE(th) I C =500 µA,V C E =V G E Zero gate voltage collector current ICES V C E = 60 0 V,V G E = 0 V µA T j = 25°C - - 40 T j = 150 °C - - 2500 100 Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - Transconductance gfs V C E =20V, I C =20A - 14 Power Semiconductors V 2 nA S Rev. 2.3 Sep 08 SKW20N60HS Dynamic Characteristic Input capacitance Ciss V C E =25V, - 1100 Output capacitance Coss VGE=0V, - 150 Reverse transfer capacitance Crss f=1MHz - 64 Gate charge QGate V C C = 48 0 V, I C =20A - 100 nC - 13 nH - 170 A pF V G E =15V Internal emitter inductance LE measured 5mm (0.197 in.) from case Short circuit collector current1) IC(SC) V G E =15V,t S C ≤1 0 µs V C C ≤ 60 0V, T j ≤ 150 °C Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 18 - 15 - 207 - 13 - 0.39 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns - 0.30 Ets T j = 25°C , V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, R G = 1 6Ω L σ 2 ) =6 0nH , Cσ2) =40pF Energy losses include “tail” and diode reverse recovery. - 0.69 trr T j = 25°C , - 130 tS V R = 40 0 V , I F =20A, - 15 tF d i F /d t= 1100 A/µs - 115 mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 730 nC Diode peak reverse recovery current Irrm - 16 A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 540 A/µs 1) 2) Allowed number of short circuits: <1000; time between short circuits: >1s. Leakage inductance L σ a nd Stray capacity C σ due to test circuit in Figure E. Power Semiconductors 3 Rev. 2.3 Sep 08 SKW20N60HS Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 15 - 8.5 - 65 - 35 - 0.46 - 0.24 - 0.7 - 17 - 13 - 222 - 13 - 0.6 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy T j = 150 °C V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, R G = 2 .2Ω L σ 1 ) =6 0nH , Cσ1) =40pF Energy losses include “tail” and diode reverse recovery. ns - 0.36 Ets T j = 150 °C V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, R G = 1 6Ω L σ 1 ) =6 0nH , Cσ1) =40pF Energy losses include “tail” and diode reverse recovery. - 0.96 trr T j = 150 °C - 200 tS V R = 40 0 V , I F =20A, - 25 tF d i F /d t= 1250 A/µs - 175 mJ ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 1500 Diode peak reverse recovery current Irrm - 21 A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 410 A/µs 1) nC Leakage inductance L σ a nd Stray capacity C σ due to test circuit in Figure E. Power Semiconductors 4 Rev. 2.3 Sep 08 SKW20N60HS 100A 80A tP=4µs TC=80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 70A 60A 50A TC=110°C 40A 30A Ic 20A 10A 50µs 200µs 1ms 1A Ic 10A 0A 10Hz 15µs 100Hz 1kHz DC 10kHz 0.1A 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) 180W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 160W 140W 120W 100W 80W 60W 20A 10A 40W 20W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 5 Rev. 2.3 Sep 08 SKW20N60HS V G E =20V 50A V GE =20V 50A 15V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 15V 13V 40A 11V 9V 30A 7V 5V 20A 10A 0V 2V 4V 9V 30A 7V 5V 20A 0A 6V T J = -5 5 °C 2 5 °C 1 5 0 °C 40A 20A 0V 2V 4V 6V 8V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=10V) Power Semiconductors 0V 2V 4V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT 11V 10A 0A 0A 13V 40A 5,5V 5,0V I C =40A 4,5V 4,0V 3,5V I C =20A 3,0V 2,5V I C =10A 2,0V 1,5V 1,0V -50°C 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 6 Rev. 2.3 Sep 08 SKW20N60HS td (o ff) tf t, SWITCHING TIMES t, SWITCHING TIMES 100ns td (o n ) 10ns tr 1ns 0A 10A 20A td(on) tr tf 100°C t d(on) tr 10Ω 20Ω 30Ω 40Ω 5,0V 4,5V max. 4,0V 3,5V typ. 3,0V 2,5V min. 2,0V 1,5V -50°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=20A, RG=16Ω, Dynamic test circuit in Figure E) Power Semiconductors 10 ns RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE t, SWITCHING TIMES 100ns 50°C tf 0Ω td(off) 0°C t d(off) 1 ns 30A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=16Ω, Dynamic test circuit in Figure E) 10ns 100 ns 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.5mA) 7 Rev. 2.3 Sep 08 SKW20N60HS *) E o n in clud e lo s se s *) Eon include losses E ts * 2 ,0 m J E on* 1 ,0 m J E o ff 0 ,0 m J 0A 10A 2 0A 30A Eon* Eoff 20Ω 30Ω 40Ω D=0.5 0.2 -1 10 K/W 0.1 0.05 R,(K/W) 0.1882 0.3214 0.1512 0.0392 0.02 -2 10 K/W 0.01 τ, (s) 0.1137 -2 2.24*10 -4 7.86*10 -5 9.41*10 R1 R2 -3 10 K/W single pulse C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 -4 10 K/W 1µs 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=20A, RG=16Ω, Dynamic test circuit in Figure E) Power Semiconductors 10Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) ZthJC, TRANSIENT THERMAL RESISTANCE E, SWITCHING ENERGY LOSSES 0,50mJ 100°C 0Ω 0 Ets* 50°C E off 0,5 mJ 10 K/W 0,75mJ 0,00mJ 0°C E on * 0,0 mJ IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=16Ω, Dynamic test circuit in Figure E) 0,25mJ 1,0 mJ 4 0A *) Eon include losses due to diode recovery E ts * due to diode recovery E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES d u e to d io d e re c ov e ry 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 16. IGBT transient thermal resistance (D = tp / T) 8 Rev. 2.3 Sep 08 15V 120V 480V 10V C os s 100pF C rs s 5V 0V 10pF 0nC 50nC 100nC 15µs 10µs tSC, 5µs 0µs 10V 11V 12V 13V 10V 20V 250A 200A 150A 100A 50A 0A 10V 14V VGE, GATE-EMITETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) IC(sc), short circuit COLLECTOR CURRENT QGE, GATE CHARGE Figure 17. Typical gate charge (IC=20 A) SHORT CIRCUIT WITHSTAND TIME C is s 1nF c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE SKW20N60HS 12V 14V 16V 18V VGE, GATE-EMITETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 9 Rev. 2.3 Sep 08 trr, REVERSE RECOVERY TIME 400ns 300ns IF=40A 200ns IF=20A Qrr, REVERSE RECOVERY CHARGE SKW20N60HS 2,0µC IF=40A 1,5µC IF=20A 1,0µC IF=10A 0,5µC IF=10A 100ns 200A/µs 400A/µs 600A/µs 0,0µC 200A/µs 800A/µs IF=40A IF=20A 20A 15A IF=10A 10A 5A 0A 200A/µs 400A/µs 600A/µs 800A/µs 800A/µs -400A/µs -300A/µs -200A/µs -100A/µs -0A/µs 200A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) Power Semiconductors 600A/µs diF/dt, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 25A Irr, REVERSE RECOVERY CURRENT diF/dt, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) 400A/µs 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) 10 Rev. 2.3 Sep 08 SKW20N60HS TJ=-55°C 25°C 150°C 2,0V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 30A 20A 10A 1,8V 1,6V IF=20A 1,4V 1,2V 0A 0,0V 0,5V 1,0V -50°C 1,5V ZthJC, TRANSIENT THERMAL RESISTANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage IF=40A IF=10A 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature 0 10 K/W D=0.5 0.2 R,(K/W) 0.311 0.271 0.221 0.584 0.314 0.1 0.05 -1 10 K/W 0.02 R1 τ, (s) -2 7.83*10 -2 1.21*10 -3 1.36*10 -4 1.53*10 -5 2.50*10 R2 0.01 C1=τ1/R1 single pulse C2=τ2/R2 -2 10 K/W 1µs 10µs 100µs 1m s 10m s 100m s tP, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D=tP/T) Power Semiconductors 11 Rev. 2.3 Sep 08 SKW20N60HS PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 Power Semiconductors MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 12 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2.3 Sep 08 SKW20N60HS i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF 10% Ir r m QF dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =60nH a nd Stray capacity C σ =40pF. Figure B. Definition of switching losses Power Semiconductors 13 Rev. 2.3 Sep 08 SKW20N60HS Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 14 Rev. 2.3 Sep 08