INFINEON SKW30N60HS

SKW30N60HS
^
High Speed IGBT in NPT-technology
C
• 30% lower Eoff compared to previous generation
• Short circuit withstand time – 10 µs
G
E
• Designed for operation above 30 kHz
• NPT-Technology for 600V applications offers:
- parallel switching capability
- moderate Eoff increase with temperature
- very tight parameter distribution
P-TO-247-3-1
(TO-247AC)
•
High ruggedness, temperature stable behaviour
•
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKW30N60HS
VCE
IC
Eoff)
Tj
600V
30
480µJ
150°C
Package
Ordering Code
TO-247AC
Q67040-S4503
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
Unit
V
A
TC = 25°C
41
TC = 100°C
30
Pulsed collector current, tp limited by Tjmax
ICpul s
112
Turn off safe operating area
-
112
VCE ≤ 600V, Tj ≤ 150°C
Diode forward current
IF
TC = 25°C
41
TC = 100°C
28
Diode pulsed current, tp limited by Tjmax
IFpul s
112
Gate-emitter voltage static
transient (tp<1µs, D<0.05)
VGE
±20
±30
V
tSC
10
µs
Ptot
250
W
Operating junction and storage temperature
Tj ,
Tstg
-55...+150
°C
Time limited operating junction temperature for t < 150h
Tj(tl)
175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
260
1)
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2 Aug-02
SKW30N60HS
^
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.5
K/W
RthJCD
1.29
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
TO-247AC
RthJA
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
T j =2 5 °C
2.8
3.15
T j =1 5 0° C
3.5
4.00
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
VF
V G E = 15 V , I C = 30 A
V G E = 0V , I F = 3 0 A
T j =2 5 °C
1.55
2.05
T j =1 5 0° C
-
1.55
2.05
3
4
5
Gate-emitter threshold voltage
VGE(th)
I C = 70 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
40
T j =1 5 0° C
-
-
3000
100
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
Transconductance
gfs
V C E = 20 V , I C = 30 A
-
20
Power Semiconductors
V
2
nA
S
Rev. 2 Aug-02
SKW30N60HS
^
Dynamic Characteristic
Input capacitance
Ciss
V C E = 25 V ,
-
1500
Output capacitance
Coss
V G E = 0V ,
-
203
Reverse transfer capacitance
Crss
f= 1 MH z
-
92
Gate charge
QGate
V C C = 48 0 V, I C =3 0 A
-
141
nC
pF
V G E = 15 V
Internal emitter inductance
LE
T O - 24 7A C
-
13
nH
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 15 0° C
-
220
A
measured 5mm (0.197 in.) from case
Short circuit collector current
1)
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
-
20
-
21
-
250
-
25
-
0.60
-
0.55
-
1.15
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 40 0 V, I C = 3 0 A,
V G E = 0/ 15 V ,
R G = 11 Ω
2)
L σ = 60 n H,
2)
C σ = 40 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =2 5 °C ,
-
125
tS
V R = 4 00 V , I F = 3 0 A,
-
20
tF
d i F / d t =1 1 00 A / µs
-
105
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
0.82
Diode peak reverse recovery current
Irrm
-
17
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
580
A/µs
1)
2)
µC
Allowed number of short circuits: <1000; time between short circuits: >1s.
Leakage inductance L σ an d Stray capacity C σ due to test circuit in Figure E.
Power Semiconductors
3
Rev. 2 Aug-02
SKW30N60HS
^
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
T j =1 5 0° C
V C C = 40 0 V, I C = 3 0 A,
V G E = 0/ 15 V ,
R G = 1 .8 Ω
1)
L σ = 60 n H,
1)
C σ = 40 pF
Energy losses include
“tail” and diode
reverse recovery.
-
16
-
13
-
122
-
29
-
0.78
-
0.48
-
1.26
-
20
-
19
-
274
-
27
-
0.91
-
0.70
-
1.61
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =1 5 0° C
V C C = 40 0 V, I C = 3 0 A,
V G E = 0/ 15 V ,
R G = 1 1Ω
1)
L σ = 60 n H,
1)
C σ = 40 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =1 5 0° C
-
190
tS
V R = 4 00 V , I F = 3 0 A,
-
30
tF
d i F / d t =1 2 50 A / µs
-
160
ns
mJ
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
2.0
µC
Diode peak reverse recovery current
Irrm
-
24
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
480
A/µs
1)
Leakage inductance L σ an d Stray capacity C σ due to test circuit in Figure E.
Power Semiconductors
4
Rev. 2 Aug-02
SKW30N60HS
^
100A
tP=4µs
15µs
T C=80°C
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
100A
80A
T C=110°C
60A
40A
Ic
20A
0A
50µs
10A
200µs
1ms
1A
Ic
10Hz
100Hz
1kHz
DC
10kHz
0,1A
1V
100kHz
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C;
VGE=15V)
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 11Ω)
Limited by Bond wire
40A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
200W
150W
100W
50W
0W
2 5 °C
50°C
7 5 °C
1 0 0 °C
20A
10A
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 150°C)
Power Semiconductors
30A
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
5
Rev. 2 Aug-02
SKW30N60HS
^
70A
60A
50A
V GE=20V
15V
13V
11V
9V
7V
5V
70A
40A
30A
50A
40A
30A
20A
10A
10A
2V
4V
0A
6V
T J = -5 5 ° C
80A
25°C
150°C
60A
40A
20A
0A
0V
2V
4V
6V
8V
2V
4V
6V
5,5V
5,0V
I C =60A
4,5V
4,0V
3,5V
I C =30A
3,0V
2,5V
I C =15A
2,0V
1,5V
1,0V
-50°C
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=10V)
Power Semiconductors
0V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
60A
20A
0A 0V
VGE=20V
15V
13V
11V
9V
7V
5V
80A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
80A
6
Rev. 2 Aug-02
SKW30N60HS
^
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
100ns
tf
100 ns
td(off)
tf
td(on)
td(on)
tr
10ns
0A
10A
20A
30A
40A
10 ns
50A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, RG=11Ω,
Dynamic test circuit in Figure E)
tr
0Ω
5Ω
10Ω
15Ω
20Ω
25Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, IC=30A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
5,5V
t, SWITCHING TIMES
td(off)
100ns
tf
tr
td(on)
10ns
0°C
50°C
100°C
4,5V
4,0V
3,5V
max.
3,0V
2,5V
typ.
2,0V
1,5V
1,0V
-50°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=400V,
VGE=0/15V, IC=30A, RG=11Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
5,0V
min.
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.7mA)
7
Rev. 2 Aug-02
SKW30N60HS
^
5,0mJ
*) Eon and Ets include losses
due to diode recovery
3,0 mJ
4,0mJ
3,0mJ
Eon*
2,0mJ
Eoff
1,0mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and E ts include losses
due to diode recovery
2,5 mJ
2,0 mJ
1,5 mJ
Ets*
1,0 mJ
Eon*
0,5 mJ
Eoff
0,0 mJ
0,0mJ
0A
10A
20A
30A
40A
50A
60A
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery
Ets*
1,5mJ
Eon*
1,0mJ
Eoff
0,5mJ
0Ω
5Ω
10Ω
15Ω
0,0mJ
50°C
100°C
-1
10 K/W
30Ω
0.2
0.1
0.05
-2
10 K/W
0.02
R,(K/W)
0.39
0.403
0.2972
0.1098
0.01
-3
10 K/W
R1
150°C
τ, (s)
0.0981
1.71*10-2
1.04*10-3
1.37*10-4
R2
single pulse
10 K/W
1µs
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=400V,
VGE=0/15V, IC=30A, RG=11Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
25Ω
D=0.5
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-4
0°C
20Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, IC=30A,
Dynamic test circuit in Figure E)
ZthJC, TRANSIENT THERMAL RESISTANCE
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, RG=11Ω,
Dynamic test circuit in Figure E)
10µs
100µs
1ms
10ms 100ms
tP, PULSE WIDTH
Figure 16. IGBT transient thermal resistance
(D = tp / T)
8
Rev. 2 Aug-02
SKW30N60HS
15V
120V
480V
10V
Coss
Crss
100pF
5V
0V
0nC
50nC
100nC
10pF
150nC
15µs
10µs
5µs
0µs
10V
11V
12V
13V
10V
20V
300A
250A
200A
150A
100A
50A
0A
10V
14V
VGE, GATE-EMITETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Power Semiconductors
0V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
IC(sc), short circuit COLLECTOR CURRENT
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=30 A)
tSC, SHORT CIRCUIT WITHSTAND TIME
Ciss
1nF
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
^
12V
14V
16V
18V
VGE, GATE-EMITETR VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 600V, Tj ≤ 150°C)
9
Rev. 2 Aug-02
SKW30N60HS
^
trr, REVERSE RECOVERY TIME
450ns
400ns
2,8µC
IF=60A
Qrr, REVERSE RECOVERY CHARGE
500ns
IF=30A
350ns
300ns IF=15A
250ns
200ns
150ns
100ns
0A/µs
IF=15A
12A
8A
4A
0A
1,8µC
IF =60A
IF =30A
1,6µC
1,4µC
1,2µC
I F=15A
250A/µs
500A/µs
750A/µs
-400A/µs
-300A/µs
-200A/µs
-100A/µs
-0A/µs
200A/µs
200A/µs 400A/µs 600A/µs 800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current
slope
(VR=400V, TJ=150°C,
Dynamic test circuit in Figure E)
Power Semiconductors
2,0µC
IF=60A
20A
16A
2,2µC
diF/dt, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current
slope
(VR=400V, TJ=150°C,
Dynamic test circuit in Figure E)
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
diF/dt, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR=400V, TJ=150°C,
Dynamic test circuit in Figure E)
24A
2,4µC
1,0µC
0A/µs
250A/µs 500A/µs 750A/µs
IF=30A
2,6µC
400A/µs
600A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=400V, TJ=150°C,
Dynamic test circuit in Figure E)
10
Rev. 2 Aug-02
SKW30N60HS
^
TJ=-55°C
2,0
VF, FORWARD VOLTAGE
50A
IF, FORWARD CURRENT
IF=60A
25°C
150°C
40A
30A
20A
IF=30A
1,5
IF=15A
1,0
0,5
10A
0A
0,0
0,0V
0,5V
1,0V
1,5V
-50
2,0V
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
0
50
100
150
TJ, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as a
function of junction temperature
ZthJC, TRANSIENT THERMAL RESISTANCE
0
10 K/W D=0.5
0.2
0.1
-1
10 K/W 0.05
0.02
0.01
R,(K/W)
0.358
0.367
0.329
0.216
0.024
τ, (s)=
9.02*10-2
9.42*10-3
9.93*10-4
1.19*10-4
1.92*10-5
-2
10 K/W
R1
single pulse
R2
C 1= τ1/R 1
C 2 = τ 2 /R 2
-3
10 K/W
1µs
10µs
100µs
1m s
10m s 100m s
tP, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
Power Semiconductors
11
Rev. 2 Aug-02
SKW30N60HS
^
dimensions
TO-247AC
[mm]
symbol
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
Q
12
0.0299 max
H
∅P
Power Semiconductors
[inch]
min
3.61
6.12
0.1421
6.22
0.2409
0.2449
Rev. 2 Aug-02
SKW30N60HS
^
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =60nH
an d Stray capacity C σ =40pF.
Figure B. Definition of switching losses
Power Semiconductors
13
Rev. 2 Aug-02
SKW30N60HS
^
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
14
Rev. 2 Aug-02