SKW30N60HS ^ High Speed IGBT in NPT-technology C • 30% lower Eoff compared to previous generation • Short circuit withstand time – 10 µs G E • Designed for operation above 30 kHz • NPT-Technology for 600V applications offers: - parallel switching capability - moderate Eoff increase with temperature - very tight parameter distribution P-TO-247-3-1 (TO-247AC) • High ruggedness, temperature stable behaviour • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW30N60HS VCE IC Eoff) Tj 600V 30 480µJ 150°C Package Ordering Code TO-247AC Q67040-S4503 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 41 TC = 100°C 30 Pulsed collector current, tp limited by Tjmax ICpul s 112 Turn off safe operating area - 112 VCE ≤ 600V, Tj ≤ 150°C Diode forward current IF TC = 25°C 41 TC = 100°C 28 Diode pulsed current, tp limited by Tjmax IFpul s 112 Gate-emitter voltage static transient (tp<1µs, D<0.05) VGE ±20 ±30 V tSC 10 µs Ptot 250 W Operating junction and storage temperature Tj , Tstg -55...+150 °C Time limited operating junction temperature for t < 150h Tj(tl) 175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev. 2 Aug-02 SKW30N60HS ^ Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.5 K/W RthJCD 1.29 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, TO-247AC RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j =2 5 °C 2.8 3.15 T j =1 5 0° C 3.5 4.00 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V G E = 15 V , I C = 30 A V G E = 0V , I F = 3 0 A T j =2 5 °C 1.55 2.05 T j =1 5 0° C - 1.55 2.05 3 4 5 Gate-emitter threshold voltage VGE(th) I C = 70 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 40 T j =1 5 0° C - - 3000 100 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - Transconductance gfs V C E = 20 V , I C = 30 A - 20 Power Semiconductors V 2 nA S Rev. 2 Aug-02 SKW30N60HS ^ Dynamic Characteristic Input capacitance Ciss V C E = 25 V , - 1500 Output capacitance Coss V G E = 0V , - 203 Reverse transfer capacitance Crss f= 1 MH z - 92 Gate charge QGate V C C = 48 0 V, I C =3 0 A - 141 nC pF V G E = 15 V Internal emitter inductance LE T O - 24 7A C - 13 nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 220 A measured 5mm (0.197 in.) from case Short circuit collector current 1) Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. - 20 - 21 - 250 - 25 - 0.60 - 0.55 - 1.15 max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 11 Ω 2) L σ = 60 n H, 2) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 °C , - 125 tS V R = 4 00 V , I F = 3 0 A, - 20 tF d i F / d t =1 1 00 A / µs - 105 ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 0.82 Diode peak reverse recovery current Irrm - 17 A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 580 A/µs 1) 2) µC Allowed number of short circuits: <1000; time between short circuits: >1s. Leakage inductance L σ an d Stray capacity C σ due to test circuit in Figure E. Power Semiconductors 3 Rev. 2 Aug-02 SKW30N60HS ^ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. T j =1 5 0° C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 .8 Ω 1) L σ = 60 n H, 1) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. - 16 - 13 - 122 - 29 - 0.78 - 0.48 - 1.26 - 20 - 19 - 274 - 27 - 0.91 - 0.70 - 1.61 max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0° C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 1Ω 1) L σ = 60 n H, 1) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0° C - 190 tS V R = 4 00 V , I F = 3 0 A, - 30 tF d i F / d t =1 2 50 A / µs - 160 ns mJ ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 2.0 µC Diode peak reverse recovery current Irrm - 24 A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 480 A/µs 1) Leakage inductance L σ an d Stray capacity C σ due to test circuit in Figure E. Power Semiconductors 4 Rev. 2 Aug-02 SKW30N60HS ^ 100A tP=4µs 15µs T C=80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 100A 80A T C=110°C 60A 40A Ic 20A 0A 50µs 10A 200µs 1ms 1A Ic 10Hz 100Hz 1kHz DC 10kHz 0,1A 1V 100kHz 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C; VGE=15V) f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11Ω) Limited by Bond wire 40A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 200W 150W 100W 50W 0W 2 5 °C 50°C 7 5 °C 1 0 0 °C 20A 10A 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 30A 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 5 Rev. 2 Aug-02 SKW30N60HS ^ 70A 60A 50A V GE=20V 15V 13V 11V 9V 7V 5V 70A 40A 30A 50A 40A 30A 20A 10A 10A 2V 4V 0A 6V T J = -5 5 ° C 80A 25°C 150°C 60A 40A 20A 0A 0V 2V 4V 6V 8V 2V 4V 6V 5,5V 5,0V I C =60A 4,5V 4,0V 3,5V I C =30A 3,0V 2,5V I C =15A 2,0V 1,5V 1,0V -50°C 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=10V) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT 60A 20A 0A 0V VGE=20V 15V 13V 11V 9V 7V 5V 80A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 80A 6 Rev. 2 Aug-02 SKW30N60HS ^ t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns tf 100 ns td(off) tf td(on) td(on) tr 10ns 0A 10A 20A 30A 40A 10 ns 50A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=11Ω, Dynamic test circuit in Figure E) tr 0Ω 5Ω 10Ω 15Ω 20Ω 25Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=30A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE 5,5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 50°C 100°C 4,5V 4,0V 3,5V max. 3,0V 2,5V typ. 2,0V 1,5V 1,0V -50°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=30A, RG=11Ω, Dynamic test circuit in Figure E) Power Semiconductors 5,0V min. 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 7 Rev. 2 Aug-02 SKW30N60HS ^ 5,0mJ *) Eon and Ets include losses due to diode recovery 3,0 mJ 4,0mJ 3,0mJ Eon* 2,0mJ Eoff 1,0mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) Eon and E ts include losses due to diode recovery 2,5 mJ 2,0 mJ 1,5 mJ Ets* 1,0 mJ Eon* 0,5 mJ Eoff 0,0 mJ 0,0mJ 0A 10A 20A 30A 40A 50A 60A E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery Ets* 1,5mJ Eon* 1,0mJ Eoff 0,5mJ 0Ω 5Ω 10Ω 15Ω 0,0mJ 50°C 100°C -1 10 K/W 30Ω 0.2 0.1 0.05 -2 10 K/W 0.02 R,(K/W) 0.39 0.403 0.2972 0.1098 0.01 -3 10 K/W R1 150°C τ, (s) 0.0981 1.71*10-2 1.04*10-3 1.37*10-4 R2 single pulse 10 K/W 1µs TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=30A, RG=11Ω, Dynamic test circuit in Figure E) Power Semiconductors 25Ω D=0.5 C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -4 0°C 20Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=30A, Dynamic test circuit in Figure E) ZthJC, TRANSIENT THERMAL RESISTANCE IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=11Ω, Dynamic test circuit in Figure E) 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 16. IGBT transient thermal resistance (D = tp / T) 8 Rev. 2 Aug-02 SKW30N60HS 15V 120V 480V 10V Coss Crss 100pF 5V 0V 0nC 50nC 100nC 10pF 150nC 15µs 10µs 5µs 0µs 10V 11V 12V 13V 10V 20V 300A 250A 200A 150A 100A 50A 0A 10V 14V VGE, GATE-EMITETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) IC(sc), short circuit COLLECTOR CURRENT QGE, GATE CHARGE Figure 17. Typical gate charge (IC=30 A) tSC, SHORT CIRCUIT WITHSTAND TIME Ciss 1nF c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE ^ 12V 14V 16V 18V VGE, GATE-EMITETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 9 Rev. 2 Aug-02 SKW30N60HS ^ trr, REVERSE RECOVERY TIME 450ns 400ns 2,8µC IF=60A Qrr, REVERSE RECOVERY CHARGE 500ns IF=30A 350ns 300ns IF=15A 250ns 200ns 150ns 100ns 0A/µs IF=15A 12A 8A 4A 0A 1,8µC IF =60A IF =30A 1,6µC 1,4µC 1,2µC I F=15A 250A/µs 500A/µs 750A/µs -400A/µs -300A/µs -200A/µs -100A/µs -0A/µs 200A/µs 200A/µs 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) Power Semiconductors 2,0µC IF=60A 20A 16A 2,2µC diF/dt, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT diF/dt, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) 24A 2,4µC 1,0µC 0A/µs 250A/µs 500A/µs 750A/µs IF=30A 2,6µC 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=400V, TJ=150°C, Dynamic test circuit in Figure E) 10 Rev. 2 Aug-02 SKW30N60HS ^ TJ=-55°C 2,0 VF, FORWARD VOLTAGE 50A IF, FORWARD CURRENT IF=60A 25°C 150°C 40A 30A 20A IF=30A 1,5 IF=15A 1,0 0,5 10A 0A 0,0 0,0V 0,5V 1,0V 1,5V -50 2,0V VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage 0 50 100 150 TJ, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJC, TRANSIENT THERMAL RESISTANCE 0 10 K/W D=0.5 0.2 0.1 -1 10 K/W 0.05 0.02 0.01 R,(K/W) 0.358 0.367 0.329 0.216 0.024 τ, (s)= 9.02*10-2 9.42*10-3 9.93*10-4 1.19*10-4 1.92*10-5 -2 10 K/W R1 single pulse R2 C 1= τ1/R 1 C 2 = τ 2 /R 2 -3 10 K/W 1µs 10µs 100µs 1m s 10m s 100m s tP, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D=tP/T) Power Semiconductors 11 Rev. 2 Aug-02 SKW30N60HS ^ dimensions TO-247AC [mm] symbol max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 Q 12 0.0299 max H ∅P Power Semiconductors [inch] min 3.61 6.12 0.1421 6.22 0.2409 0.2449 Rev. 2 Aug-02 SKW30N60HS ^ i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =60nH an d Stray capacity C σ =40pF. Figure B. Definition of switching losses Power Semiconductors 13 Rev. 2 Aug-02 SKW30N60HS ^ Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 14 Rev. 2 Aug-02