4N32/4N33 PHOTODARLINGTON OPTOCOUPLER FEATURES • Very High Current Transfer Ratio, 500% Min. • High Isolation Resistance, 1011 Ω Typical • Standard Plastic DIP Package • Underwriters Lab File #E52744 • V VDE Approvals #0884 (Available with Option 1) D E Dimensions in inches (mm) Pin One ID. 3 2 1 .248 (6.30) .256 (6.50) 4 The 4N32 and 4N33 are optically coupled isolators with a Gallium Arsenide infrared LED and a silicon photodarlington sensor. Switching can be achieved while maintaining a high degree of isolation between driving and load circuits. These optocouplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields. .335 (8.50) .343 (8.70) Emitter Peak Reverse Voltage ........................................3 V Continuous Forward Current .........................60 mA Power Dissipation at 25°C..........................100 mW Derate Linearly from 55°C....................1.33 mW/°C Detector Collector-Emitter Breakdown Voltage, BVCEO .......................................................... 30 V Emitter-Base Breakdown Voltage, BVEBO ............................................................. 8V Collector-Base Breakdown Voltage, BVCBO .......................................................... 50 V Emiter-Collector Breakdown Voltage, BVECO ............................................................ 5 V Collector (load) Current...............................125 mA Power Dissipation at 25°C Ambient ...........150 mW Derate Linearly from 25°C......................2.0 mW/°C Package Total Dissipation at 25°C Ambient .............250 mW Derate Linearly from 25°C......................3.3 mW/°C Isolation Test Voltage......................... 5300 VACRMS Between Emitter and Detector, Standard Climate: 23°C/50%RH, DIN 50014 Leakage Path ........................................ 7 mm min. Air Path................................................... 7 mm min. Isolation Resitance VIO=500 V/25°C ...................................... ≥1012 Ω VIO=500 V/100°C .................................... ≥1011 Ω Storage Temperature ...................–55°C to +150°C Operating Temperature ...............–55°C to +100°C Lead Soldering Time at 260°C .................... 10 sec. 6 Base Cathode 2 DESCRIPTION Maximum Ratings Anode 1 5 4 Emitter NC 3 6 .300 (7.62) typ. .039 (1.00) min. 4° typ. 5 Collector .130 (3.30) .150 (3.81) 18° typ. .020 (.051) min. .010 (.25) .014 (.35) .031 (0.80) .035 (0.90) .018 (0.45) .022 (0.55) .110 (2.79) .150 (3.81) .300 (7.62) .347 (8.82) .100 (2.54) typ. Electrical Characteristics (TA=25°C) Parameter Min. Typ. Max. Unit Condition Forward Voltage 1.25 1.5 V IF=50 mA Reverse Current 0.1 100 µA VR=3.0 V Capacitance 25 pF VR=0 V Emitter Detector BVCEO* 30 V IC=100 µA, IF=0 BVCBO* 50 V IC=100 µA, IF=0 BVEBO* 8 V IC=100 µA, IF=0 BVECO* 5 V IE=100 µA, IF=0 nA VCE=10 V, IF=0 10 ICEO 1.0 HFE 13K 100 IC=0.5 mA Package Current Transfer Ratio 500 % IF=10 mA, VCE=10 V IC=2 mA, IF=8 mA VCEsat 1.0 V Coupling Capacitance 1.5 pF Turn On Time 5 µs VCC=10 V, IC=50 mA Turn Off Time 100 µs IF=200mA, RL=180 Ω *Indicates JEDEC registered values 5–1 Figure 1. Forward voltage versus forward current Figure 5. Non-saturated and saturated HFE versus base current 5 1.3 Ta = -55°C HFE - Forward Transfer Gain VF - Forward Voltage - V 1.4 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 100°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 0.8 Vce = 5 V 0.2 Vce =1V 1 10 100 IF - LED Current - mA 1000 Vce = 1V .01 100 Figure 4. Normalized collector-base photocurrent versus LED current NIcb - Normalized Icb 10 80 Ta = 25°C, Vcc = 5V Vth = 1.5 V 60 1KΩ 220Ω 40 470Ω 20 100Ω 0 0 5 10 15 IF - LED Current - mA 20 1KΩ 15 Ta = 25°C Vcc = 5 V Vth = 1.5 V 10 100Ω 5 0 0 5 10 15 IF - LED Current - mA 20 VCC RL VO tD tR .001 tPHL 100 VO tPLH .01 1 10 IF - LED Current - mA 100 Figure 8. Switching waveform and switching schematic .1 .1 10 IF Normalized to: Ta = 25°C Vcb = 3.5 V IF = 10 mA 1 1 20 Vce = 5 V 1 10 IF - LED Current - mA .1 Figure 7. High to low propagation delay versus collector load resistance and LED current .1 .001 .1 0 .01 tpHL - High/Low Propagation delay - µs NIce - Normalized Ice Figure 3. Normalized non-saturated and saturated collector-emitter current versus LED current 10 Normalized to: Ta = 25°C IF = 10 mA 1 Vce = 5 V Vce = 1 V 2000 Figure 6. Low to high propagation delay versus collector load resistance and LED current 0.4 0.0 .1 4000 Ib - Base Current - µA Normalized to: Vce = 5 V IF = 10 mA Ta = 25 °C 0.6 Vce = 5 V 6000 tpLH - Low/High Propagation Delay - µs NCTRce - Normalized CTRce 1.0 Ta = 25°C 8000 100 Figure 2. Normalized non-saturated and saturated CTRce versus LED current 1.2 10000 tS IF VTH=1.5 V tF 4N32/33 5–2