INFINEON IL205AT

IL205AT/206AT/207AT/
208AT
FEATURES
• High Current Transfer Ratio, IF=10mA,
•
•
•
•
•
•
•
VCE=5 V
IL205AT, 40 – 80%
IL206AT, 63 –125%
IL207AT, 100 – 200%
IL208AT, 160 – 320%
High BVCEO, 70 V
Isolation Voltage, 2500 VACRMS
Industry Standard SOIC-8 Surface
Mountable Package
Standard Lead Spacing, .05"
Available in Tape and Reel (suffix T)
(Conforms to EIA Standard RS481A)
Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Underwriters Lab File #E52744
(Code Letter P)
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
.120±.005
(3.05±.13)
.240
(6.10)
Anode
.154±.005 Cathode
CL
(3.91±.13)
NC
NC
.016 (.41)
Pin One ID
.192±.005
(4.88±.13)
.015±.002
(.38±.05)
.004 (.10)
.008 (.20)
.008 (.20)
.050 (1.27)
typ.
.021 (.53)
8
7
6
5
1
2
3
4
40°
7°
.058±.005
(1.49±.13)
5° max.
R.010
(.25) max.
.020±.004
(.15±.10)
2 plcs.
NC
Base
Collector
Emitter
.125±.005
(3.18±.13)
Lead
Coplanarity
±.0015 (.04)
max.
TOLERANCE: ±.005 (unless otherwise noted)
DESCRIPTION
The IL205AT/206AT/207AT/208AT are optically
coupled pairs with a Gallium Arsenide infrared LED
and a silicon NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of electrical
isolation between input and output. The IL205/6/7/8
come in a standard SOIC-8 small outline package
for surface mounting which makes them ideally
suited for high density applications with limited
space. In addition to eliminating through-holes
requirements, this package conforms to standards
for surface mounted devices.
A specified minimum and maximum CTR allows a
narrow tolerance in the electrical design of the
adjacent circuits. The high BVCEO of 70 volts gives
a higher safety margin compared to the industry
standard 30 volts.
Maximum Ratings
Emitter
Peak Reverse Voltage ....................................... 6.0 V
Continuous Forward Current .......................... 60 mA
Power Dissipation at 25°C ............................. 90 mW
Derate Linearly from 25°C ....................... 1.2 mW/°C
Detector
Collector-Emitter Breakdown Voltage ................ 70 V
Emitter-Collector Breakdown Voltage .................. 7 V
Collector-Base Breakdown Voltage ................... 70 V
Power Dissipation ........................................ 150 mW
Derate Linearly from 25°C ....................... 2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ...................................... 240 mW
Derate Linearly from 25°C ....................... 3.3 mW/°C
Storage Temperature ..................... –55°C to +150°C
Operating Temperature ................. –55°C to +100°C
Soldering Time at 260°C ............................... 10 sec.
Semiconductor Group
Characteristics (TA=25°C)
Symbol Min. Typ.
Emitter
Forward Voltage
Reverse Current
Capacitance
Detector
Breakdown Voltage
Collector-Emitter
Emitter-Collector
Collector-Emitter
Dark Current
Collector-Emitter
Capacitance
Package
DC Current Transfer
IL205AT
IL206AT
IL207AT
IL208AT
DC Current Transfer
IL205AT
IL206AT
IL207AT
IL208AT
Collector-Emitter
Saturation Voltage
Isolation Test Voltage
Equivalent DC
Isolation Voltage
Capacitance,
Input to Output
Resistance,
Input to Output
Switching Time
VF
IR
CO
1.3
0.1
25
BVCEO 70
BVECO 7
10
I CEOdark
5
CCE
10
Max. Unit
Condition
1.5
100
V
µA
pF
IF=10 mA
VR=6.0 V
VR=0
V
V
nA
IC=100 µA
IE=100 µA
VCE=10 V,
I F=0
pF
VCE =0
%
IF=10 mA,
VCE=5 V
%
IF=1 mA,
VCE=5 V
50
CTRDC
40
63
100
160
80
125
200
320
CTRDC
13
22
34
56
VCE sat
V IO
25
40
60
95
IC=2.0 mA,
IF=10 mA
0.4
2500
VACRMS
3535
VDC
C IO
0.5
pF
R IO
tON, tOFF
100
3.0
GΩ
µs
IC=2 mA,
RE=100 Ω,
VCE=10 V
Specifications subject to change.
4–1
10.95
1.4
1.5
1.3
Ta = -55°C
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
Ice - Collector-emitter
Current - mA
Figure 3. Collector-emitter current versus
LED current
150
Ta = 25°C
NCTRce - Normalized CTRce
Figure 2. Normalized non-saturated and
saturated CTRce versus LED current
Vce = 10 V
50
Vce = 0.4 V
0
1
10
IF - LED Current - mA
Iceo - Collector-Emitter - nA
TYPICAL
10 -1
10 -2
-20
100
Normalized to:
Vcb = 9.3 V
10 IF = 1 mA
Ta = 25 °C
1
.1
1
10
IF - LED Current - mA
100
Vcb = 9.3 V
100
10
1
100
Vce = 10V
1
10 0
1
10
IF - LED Current - mA
.1
1
10
IF - LED Current - mA
Figure 7. Collector-emitter leakage current
versus temperature
5
10
4
10
3
10
10 2
10
.1
Figure 6. Collector-base photocurrent versus
LED current
1000
Ta = 25°C
Icb - Collector-base
Current - µA
Normalized to:
Vcb = 9.3 V
IF = 10 mA
Ta = 25 °C
.1
.01
.1
Vce = 0.4 V
0.0
.1
0
20
40
60
80
100
Ta - Ambient Temperature - °C
Semiconductor Group
.1
1
10
100
IF - LED Current - mA
Figure 8. Normalized saturated HFE versus
base current and temperature
2.0
NHFE(sat) - Normalized
Saturated HFE
NIcb - Normalized Icb
1
Vce = 5 V
0.5
100
Figure 5. Normalized collector-base photocurrent
versus LED current
10
1.0
100
100
.1
Normalized to:
Vce = 10 V
IF = 10 mA
Ta = 25°C
Figure 4. Normalized collector-base photocurrent
versus LED current
NIcb - Normalized Icb
VF - Forward Voltage - V
Figure 1. Forward voltage versus forward current
70°C
25°C
1.5
50°C
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25 °C
1.0
Vce = 0.4 V
0.5
0.0
1
4–2
10
100
Ib - Base Current - µA
1000
Figure 9. Typical switching characteristics
versus base resistance (saturated operation)
Figure 10. Typical switching times
versus load resistance
1000
Input:
IF =10mA
50 Pulse
width=100 mS
Duty cycle=50%
F
T OF
10
5
TON
Switching time (µS)
Switching time (µs)
100
Input:
500 IF=10 mA
Pulse width=100 mS
Duty cycle=50%
100
50
10
10K
50K 100K
500K 1M
0.1
0.5 1
5
10
50 100
Load resistance RL (KΩ)
Base-emitter resistance, RBE (Ω)
Semiconductor Group
TON
5
1
1.0
FF
TO
4–3