IL205AT/206AT/207AT/ 208AT FEATURES • High Current Transfer Ratio, IF=10mA, • • • • • • • VCE=5 V IL205AT, 40 – 80% IL206AT, 63 –125% IL207AT, 100 – 200% IL208AT, 160 – 320% High BVCEO, 70 V Isolation Voltage, 2500 VACRMS Industry Standard SOIC-8 Surface Mountable Package Standard Lead Spacing, .05" Available in Tape and Reel (suffix T) (Conforms to EIA Standard RS481A) Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering Underwriters Lab File #E52744 (Code Letter P) PHOTOTRANSISTOR SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER Package Dimensions in Inches (mm) .120±.005 (3.05±.13) .240 (6.10) Anode .154±.005 Cathode CL (3.91±.13) NC NC .016 (.41) Pin One ID .192±.005 (4.88±.13) .015±.002 (.38±.05) .004 (.10) .008 (.20) .008 (.20) .050 (1.27) typ. .021 (.53) 8 7 6 5 1 2 3 4 40° 7° .058±.005 (1.49±.13) 5° max. R.010 (.25) max. .020±.004 (.15±.10) 2 plcs. NC Base Collector Emitter .125±.005 (3.18±.13) Lead Coplanarity ±.0015 (.04) max. TOLERANCE: ±.005 (unless otherwise noted) DESCRIPTION The IL205AT/206AT/207AT/208AT are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL205/6/7/8 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. A specified minimum and maximum CTR allows a narrow tolerance in the electrical design of the adjacent circuits. The high BVCEO of 70 volts gives a higher safety margin compared to the industry standard 30 volts. Maximum Ratings Emitter Peak Reverse Voltage ....................................... 6.0 V Continuous Forward Current .......................... 60 mA Power Dissipation at 25°C ............................. 90 mW Derate Linearly from 25°C ....................... 1.2 mW/°C Detector Collector-Emitter Breakdown Voltage ................ 70 V Emitter-Collector Breakdown Voltage .................. 7 V Collector-Base Breakdown Voltage ................... 70 V Power Dissipation ........................................ 150 mW Derate Linearly from 25°C ....................... 2.0 mW/°C Package Total Package Dissipation at 25°C Ambient (LED + Detector) ...................................... 240 mW Derate Linearly from 25°C ....................... 3.3 mW/°C Storage Temperature ..................... –55°C to +150°C Operating Temperature ................. –55°C to +100°C Soldering Time at 260°C ............................... 10 sec. Semiconductor Group Characteristics (TA=25°C) Symbol Min. Typ. Emitter Forward Voltage Reverse Current Capacitance Detector Breakdown Voltage Collector-Emitter Emitter-Collector Collector-Emitter Dark Current Collector-Emitter Capacitance Package DC Current Transfer IL205AT IL206AT IL207AT IL208AT DC Current Transfer IL205AT IL206AT IL207AT IL208AT Collector-Emitter Saturation Voltage Isolation Test Voltage Equivalent DC Isolation Voltage Capacitance, Input to Output Resistance, Input to Output Switching Time VF IR CO 1.3 0.1 25 BVCEO 70 BVECO 7 10 I CEOdark 5 CCE 10 Max. Unit Condition 1.5 100 V µA pF IF=10 mA VR=6.0 V VR=0 V V nA IC=100 µA IE=100 µA VCE=10 V, I F=0 pF VCE =0 % IF=10 mA, VCE=5 V % IF=1 mA, VCE=5 V 50 CTRDC 40 63 100 160 80 125 200 320 CTRDC 13 22 34 56 VCE sat V IO 25 40 60 95 IC=2.0 mA, IF=10 mA 0.4 2500 VACRMS 3535 VDC C IO 0.5 pF R IO tON, tOFF 100 3.0 GΩ µs IC=2 mA, RE=100 Ω, VCE=10 V Specifications subject to change. 4–1 10.95 1.4 1.5 1.3 Ta = -55°C 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 Ice - Collector-emitter Current - mA Figure 3. Collector-emitter current versus LED current 150 Ta = 25°C NCTRce - Normalized CTRce Figure 2. Normalized non-saturated and saturated CTRce versus LED current Vce = 10 V 50 Vce = 0.4 V 0 1 10 IF - LED Current - mA Iceo - Collector-Emitter - nA TYPICAL 10 -1 10 -2 -20 100 Normalized to: Vcb = 9.3 V 10 IF = 1 mA Ta = 25 °C 1 .1 1 10 IF - LED Current - mA 100 Vcb = 9.3 V 100 10 1 100 Vce = 10V 1 10 0 1 10 IF - LED Current - mA .1 1 10 IF - LED Current - mA Figure 7. Collector-emitter leakage current versus temperature 5 10 4 10 3 10 10 2 10 .1 Figure 6. Collector-base photocurrent versus LED current 1000 Ta = 25°C Icb - Collector-base Current - µA Normalized to: Vcb = 9.3 V IF = 10 mA Ta = 25 °C .1 .01 .1 Vce = 0.4 V 0.0 .1 0 20 40 60 80 100 Ta - Ambient Temperature - °C Semiconductor Group .1 1 10 100 IF - LED Current - mA Figure 8. Normalized saturated HFE versus base current and temperature 2.0 NHFE(sat) - Normalized Saturated HFE NIcb - Normalized Icb 1 Vce = 5 V 0.5 100 Figure 5. Normalized collector-base photocurrent versus LED current 10 1.0 100 100 .1 Normalized to: Vce = 10 V IF = 10 mA Ta = 25°C Figure 4. Normalized collector-base photocurrent versus LED current NIcb - Normalized Icb VF - Forward Voltage - V Figure 1. Forward voltage versus forward current 70°C 25°C 1.5 50°C Normalized to: Ib = 20µA Vce = 10 V Ta = 25 °C 1.0 Vce = 0.4 V 0.5 0.0 1 4–2 10 100 Ib - Base Current - µA 1000 Figure 9. Typical switching characteristics versus base resistance (saturated operation) Figure 10. Typical switching times versus load resistance 1000 Input: IF =10mA 50 Pulse width=100 mS Duty cycle=50% F T OF 10 5 TON Switching time (µS) Switching time (µs) 100 Input: 500 IF=10 mA Pulse width=100 mS Duty cycle=50% 100 50 10 10K 50K 100K 500K 1M 0.1 0.5 1 5 10 50 100 Load resistance RL (KΩ) Base-emitter resistance, RBE (Ω) Semiconductor Group TON 5 1 1.0 FF TO 4–3