INFINEON TLE4699

TLE4699
Low Drop Out Linear Voltage Regulator
5 V Fixed Output Voltage
Data Sheet
Rev. 1.0, 2010-11-30
Automotive Power
TLE4699
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
3.3
3.4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment TLE4699GM (PG-DSO-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions TLE4699GM (PG-DSO-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment TLE4699E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions TLE4699E (PG-SSOP-14 EP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
5.1
5.2
5.3
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
6.1
6.2
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
7.1
7.2
7.3
Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
8
8.1
8.2
8.3
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
20
23
24
9
9.1
9.2
9.3
Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
27
27
10
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Data Sheet
2
5
5
5
7
7
12
12
13
14
Rev. 1.0, 2010-11-30
Low Drop Out Linear Voltage Regulator
5 V Fixed Output Voltage
1
TLE4699
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Output Voltage 5 V ± 2%
Current Capability 200 mA
Ultra Low Current Consumption
Very Low Drop Out Voltage
Enable Function: Below 1µA Current Consumption in off mode
Reset Circuit Sensing the Output Voltage
with Programmable Switching Threshold and Delay Time
Reset Output Active Low Down to VQ = 1 V
Integrated Early Warning Comparator
Excellent Line Transient Robustness
Maximum Input Voltage -42 V ≤ VI ≤ +45 V
Reverse Polarity Protection
Short Circuit Protected
Overtemperature Shutdown
Automotive Temperature Range -40 °C ≤ Tj ≤ 150 °C
Available in a small thermally enhanced PG-SSOP-14 EP package
Green Product (RoHS Compliant)
AEC Qualified
PG-DSO-14
PG-SSOP-14 EP
Description
The TLE4699 is a monolithic integrated low drop out fixed output voltage
regulator for loads up to 200 mA. An input voltage of up to 45 V is regulated to an output voltage of 5 V. The
integrated reset as well as several protection circuits, combined with a wide operating temperature range offered
by the TLE4699 make it suitable for supplying microprocessor systems in automotive environments.
The early warning function supervises the voltage at pin SI. Modifying the reset threshold is possible by an optional
resistor divider.
The TLE4699 is available in a PG-DSO-14 package which makes it pin-compatible to the TLE4299 as well as in
a small thermally enhanced PG-SSOP-14 EP exposed pad package.
Type
Package
Marking
TLE4699GM
PG-DSO-14
TLE4699
TLE4699E
PG-SSOP-14 EP
TLE4699
Data Sheet
3
Rev. 1.0, 2010-11-30
TLE4699
Block Diagram
2
Block Diagram
j
TLE4699
I
Q
Bandgap
Reference
SO
Protection
Circuits
Reset
EN
RO
Generator
SI
RADJ
GND
D
Block_ diagram.vsd
Figure 1
Data Sheet
Block Diagram TLE4699
4
Rev. 1.0, 2010-11-30
TLE4699
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment TLE4699GM (PG-DSO-14)
RADJ
1
14
SI
D
2
13
I
GND
3
12
GND
GND
4
11
GND
GND
5
10
GND
EN
6
9
Q
RO
7
8
SO
PinConfig_PG-DSO-14.vsd
Figure 2
Pin Configuration PG-DSO-14 Package (top view)
3.2
Pin Definitions and Functions TLE4699GM (PG-DSO-14)
Pin
Symbol
Function
1
RADJ
Reset Threshold Adjust
Connect an external voltage divider to adjust reset threshold;
Connect to GND for using internal threshold.
2
D
Reset Delay
Connect a ceramic capacitor from D (Pin 2) to GND for reset delay time adjustment;
Leave open, if the reset function is not needed.
3, 4, 5
GND
Ground
Connect all pins to heat sink area.
6
EN
Enable
High signal enables the regulator;
Low signal disables the regulator;
Connect to I if the enable function is not needed
7
RO
Reset Output
Open collector output with an internal pull-up resistor to the output Q;
An additional external pull-up resistor to the output Q is optional;
Leave open if the reset function is not needed.
8
SO
Sense Output
Open collector output with an internal pull-up resistor to the output Q;
An additional external pull-up resistor to the output Q is optional;
Leave open if the sense function is not needed.
9
Q
5 V Regulator Output
Connect a capacitor between Q (Pin 9) and GND close to the IC pins, respecting the
values given for its capacitance CQ and ESR in the table Chapter 4.2 Functional Range.
10, 11, 12 GND
Data Sheet
Ground
Connect all pins to heat sink area.
5
Rev. 1.0, 2010-11-30
TLE4699
Pin Configuration
Pin
Symbol
Function
13
I
Regulator Input and IC Supply
for compensating line influences, a capacitor to GND close to the IC pin is recommended.
14
SI
Sense Input
Connect the voltage rail to be monitored;
Connect to Q if the sense comparator is not needed.
Data Sheet
6
Rev. 1.0, 2010-11-30
TLE4699
Pin Configuration
3.3
Pin Assignment TLE4699E
RADJ
n.c.
D
GND
EN
n.c.
RO
1
2
3
4
5
6
7
14
13
12
11
10
9
8
SI
I
n.c.
Q
n.c.
n.c.
SO
PINCONFIG_SSOP-14.VSD
Figure 3
Pin Configuration PG-SSOP-14 EP Package (top view)
3.4
Pin Definitions and Functions TLE4699E (PG-SSOP-14 EP)
Pin
Symbol
Function
1
RADJ
Reset Threshold Adjust
Connect an external voltage divider to adjust reset threshold;
Connect to GND for using internal threshold.
3
D
Reset Delay
Connect a ceramic capacitor from D (Pin 3) to GND for reset delay time adjustment;
Leave open, if the reset function is not needed.
4
GND
Ground
Connect to heat sink area.
5
EN
Enable
High signal enables the regulator;
Low signal disables the regulator;
Connect to I if the enable function is not needed
7
RO
Reset Output
Open collector output with an internal pull-up resistor to the output Q;
An additional external pull-up resistor to the output Q is optional;
Leave open if the reset function is not needed.
8
SO
Sense Output
Open collector output with an internal pull-up resistor to the output Q;
An additional external pull-up resistor to the output Q is optional;
Leave open if the sense function is not needed.
11
Q
5 V Regulator Output
Connect a capacitor between Q (Pin 11) and GND close to the IC pins, respecting the
values given for its capacitance CQ and ESR in the table Chapter 4.2 Functional Range.
13
I
Regulator Input and IC Supply
For compensating line influences, a capacitor to GND close to the IC pin is
recommended.
14
SI
Sense Input
Connect the voltage rail to be monitored;
Connect to Q if the sense comparator is not needed.
Data Sheet
7
Rev. 1.0, 2010-11-30
TLE4699
Pin Configuration
Pin
Symbol
Function
2, 6, 9,
10, 12
n.c.
Not connected
Internally not connected; Connection to PCB GND recommended.
PAD
Exposed Pad
Attach the exposed pad on package bottom to the heatsink area on circuit board;
Connect to GND
Data Sheet
8
Rev. 1.0, 2010-11-30
TLE4699
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
-42
45
V
–
-42
45
V
–
-42
45
V
–
-1
7
V
–
-0.3
7
V
–
-0.3
7
V
–
-0.3
7
V
–
-0.3
7
V
–
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
VESD
VESD
-4
4
kV
HBM 2)
-1500
1500
V
CDM 3)
Voltage Rating
VI
4.1.1
Regulator Input and IC
Supply I
4.1.2
VEN
Sense Input SI
VSI
Regulator Output Q
VQ
Sense Output SO
VWI
Reset Output RO
VRO
Reset Delay D
VD
Reset Switching Threshold VRADJ
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
Enable Input EN
Adjust RADJ
Temperatures
4.1.9
Junction Temperature
4.1.10
Storage Temperature
ESD Susceptibility
4.1.11
ESD Resistivity
4.1.12
ESD Resistivity
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to AEC-Q100-002-JESD 22-A114.
3) ESD susceptibility, Charged Device Model “CDM” according to ESDA STM5.3.1.
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
9
Rev. 1.0, 2010-11-30
TLE4699
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
4.2.1
Input Voltage Range
for Normal Operation
VI(nor)
VQ + Vdr
45
V
1)
4.2.2
Extended Input
Voltage Range
VI(ext)
3.3
45
V
2)
4.2.3
Input Voltage
Transient Immunity
dVI/dt
-10
20
V/µs
dVI ≤ 10 V; VI > 9 V;
No trigger of RO.3)
Tj
-40
150
°C
–
CQ
10
–
µF
–4)
4.2.6
ESRCQ
–
3
Ω
–5)
1) For specification of the input voltage VQ and the drop out voltage Vdr see Chapter 5 Voltage Regulator.
4.2.4
Junction Temperature
4.2.5
Output Capacitor
Requirements
2) The output voltage VQ will follow the input voltage, but is outside the specified range.
For details see Chapter 5 Voltage Regulator.
3) Transient measured directly at the input pin. Not subject to production test, specified by design.
4) Not subject of production test, specified by design.
The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%
5) Relevant ESR value at f = 10 kHz
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
10
Rev. 1.0, 2010-11-30
TLE4699
General Product Characteristics
4.3
Pos.
Thermal Resistance
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
TLE4699GM Package PG-DSO-14
4.3.1
Junction to Soldering Point1)
RthJSP
–
27
–
K/W
Pins 3-5 and 10-12
fixed to TA
4.3.2
Junction to Ambient
RthJA
–
112
–
K/W
Footprint only2)
4.3.3
–
73
–
K/W
300 mm2 PCB
heat sink area2)
4.3.4
–
65
–
K/W
600 mm2 PCB
heat sink area2)
4.3.5
–
63
–
K/W
2s2p PCB 3)
–
10
–
K/W
–
–
140
–
K/W
Footprint only2)
4.3.8
–
63
–
K/W
300 mm2 PCB
heat sink area2)
4.3.9
–
53
–
K/W
600 mm2 PCB
heat sink area2)
K/W
2s2p PCB3)
TLE4699E Package PG-SSOP-14 EP
4.3.6
4.3.7
Junction to Soldering Point1)
1)
Junction to Ambient
RthJSP
RthJA
4.3.10
47
1) Not subject to production test, specified by design
2) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Data Sheet
11
Rev. 1.0, 2010-11-30
TLE4699
Voltage Regulator
5
Voltage Regulator
5.1
Description Voltage Regulator
The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass
transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass
element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and
the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance
and its equivalent series resistor ESR requirements given in the table ““Functional Range” on Page 10 have to
be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs.
Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients.
An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences.
Connect the capacitors close to the IC terminals.
Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These
safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of
overtemperature.
In order to avoid excessive power dissipation that could never be handled by the pass element and the package,
the maximum output current is decreased at input voltages above VI = 22 V.
The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output
continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, a junction
temperature above 150 °C is outside the maximum rating and therefore reduces the IC lifetime.
The TLE4699 allows a negative supply voltage. However, several small currents are flowing into the IC increasing
its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection
circuit is not operating during reverse polarity condition.
II
Supply
I
Q
+
VI
+
Saturation Control
Current Limitation
CQ
CI
Bandgap
Reference
Temperature
Shutdown
V
VQ,nom
VI(ext),min
Data Sheet
LOAD
Block Diagram Voltage Regulator Circuit
VI
Vdr
VQ
dVQ
Iload
≈
CQ
dt
Diagram_Output-InputVoltage.svg
Figure 5
VQ
GND
BlockDiagram _VoltageRegulator .vsd
Figure 4
Regulated
Output Voltage
IQ
dVQ
IQ,max - Iload
≈
CQ
dt
t
Output Voltage vs. Input Voltage
12
Rev. 1.0, 2010-11-30
TLE4699
Voltage Regulator
5.2
Electrical Characteristics Voltage Regulator
Electrical Characteristics: Voltage Regulator
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 4 (unless otherwise specified)
Pos.
Parameter
Symbol
5.2.1
Output Voltage
VQ
Limit Values
Min.
Typ.
Max.
4.9
5.0
5.1
Unit
Conditions
V
0 mA ≤ IQ ≤ 200 mA;
8 V ≤ VI ≤ 18 V
5.2.2
0 mA ≤ IQ ≤ 150 mA;
6 V ≤ VI ≤ 18 V
5.2.3
0 mA ≤ IQ ≤ 100 mA;
18V ≤ VI ≤ 32 V
Tj ≤ 105 °C 1) 2)
5.2.4
0 mA ≤ IQ ≤ 10 mA;
32 V ≤ VI ≤ 45 V
Tj ≤ 105 °C 1) 2)
5.2.5
0.3 mA ≤ IQ ≤ 100 mA;
18 V ≤ VI ≤ 32 V 1)
5.2.6
0.3 mA ≤ IQ ≤ 10 mA;
32 V ≤ VI ≤ 45 V 1)
5.2.7
Load Regulation
steady-state
|dVQ,load|
–
5
30
mV
5.2.16
Overtemperature Shutdown
Threshold
Tj,sd
151
–
200
°C
IQ = 1 mA to 150 mA;
VI = 6 V
VI = 6 V to 32 V;
IQ = 5 mA
fripple = 100 Hz;
Vripple = 1 Vpp 2)
IQ = 50 mA 3)
IQ = 150 mA 3)
0 V ≤ VQ ≤ 4.8 V
VI = 0 V; VQ = 5 V
VI = -16 V; VQ = 0 V
VI = -42 V; VQ = 0 V
Tj increasing 2)
5.2.8
Line Regulation
steady-state
|dVQ,line|
–
2
20
mV
5.2.9
Power Supply Ripple
Rejection
PSRR
60
65
–
dB
5.2.10
Drop out Voltage
Vdr
–
90
200
mV
5.2.11
Vdr = VI - VQ
–
160
350
mV
5.2.12
Output Current Limitation
201
350
500
mA
5.2.13
Reverse Current
-1.5
-0.7
–
mA
5.2.14
Reverse Current
at Negative Input Voltage
5.2.17
Overtemperature Shutdown
Threshold Hysteresis
Tj,hy
–
20
–
K
Tj decreasing 2)
5.2.15
IQ,max
IQ
II
-2
-1
–
mA
-5
-3,5
–
mA
1) See typical performance graph for details.
2) Parameter not subject to production test; specified by design.
3) Measured when the output voltage VQ has dropped 100 mV from its nominal value.
Data Sheet
13
Rev. 1.0, 2010-11-30
TLE4699
Voltage Regulator
5.3
Typical Performance Characteristics Voltage Regulator
Output Voltage VQ vs.
Junction Temperature Tj
Output Capacitor Series Resistor ESRCQ
vs. Output Current IQ
VQ -Tj. v s d
100
VQ [V]
ESR 1 0 u-IQ .v s d
ESRCQ
C Q ≥ 10 µF;
6 V ≤ VI ≤ 28 V;
-40 °C ≤ Tj ≤ 150 °C
[Ω]
10
5.02
5.00
1
Stable
Region
4.98
0 .1
4.96
-40 -20
0
20 40
60
0.01
80 100 120 140
T j [°C]
0
40
80
120
160
IQ [mA]
Output Current Limitation IQ,max
vs. Input Voltage V I
SO A.v s d
IQ,ma x
[mA]
400
Tj = 25 °C
T j = 125 °C
300
200
100
0
10
20
30
40
VI [V]
Data Sheet
14
Rev. 1.0, 2010-11-30
TLE4699
Voltage Regulator
Dropout Voltage Vdr vs.
Output Current IQ
Dropout Voltage Vdr vs.
Junction Temperature Tj
300
Vd r- IQ.v s d
Vdr [mV]
Vd r- Tj. v s d
Vdr [mV]
IQ = 150 mA
200
200
T j = 125 °C
100
150
100
50
T j = 25 °C
20
IQ = 50 mA
IQ = 200 µA
0.2
1
10
0
-40 -20
100
20
40
60
80 100 120 140
IQ [mA]
Tj [°C]
Reverse Output Current IQ vs.
Output Voltage VQ
Reverse Current II vs.
Input Voltage VI
0
0
IQ-VQ @ VI=0 v. s d
IQ [mA]
VI = 0 V
II [mA]
-0.4
II-VI@VQ =0 .v s d
VQ = 0 V
-1
T j = -40 °C
-0.6
-1.5
T j = 150 °C
Tj = -40 °C
-2
-0.8
Tj = 25 °C
-2.5
T j = 150 °C
0
1.6
3.2
4 .8
6
-32
V Q [V]
Data Sheet
- 24
-16
-8
0
VI [V]
15
Rev. 1.0, 2010-11-30
TLE4699
Current Consumption
6
Current Consumption
6.1
Electrical Characteristics Current Consumption
Electrical Characteristics: Current Consumption
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in
Figure 6 “Parameter Definition” on Page 18 (unless otherwise specified)
Pos.
Parameter
Symbol
6.1.1
Current Consumption
Iq = II - IQ
Iq,on
Limit Values
Min.
Typ.
Max.
–
65
100
Unit
Conditions
μA
IQ ≤ 200 μA; Tj ≤ 25 °C
Enable on
6.1.2
–
80
105
μA
IQ ≤ 200 μA; Tj ≤ 85 °C
Enable on
6.1.3
–
1.0
2.0
mA
IQ = 50 mA
Enable on
6.1.4
–
5
10
mA
IQ = 150 mA
Enable on
–
–
1
μA
–
–
2
μA
Tj ≤ 25 °C
VEN = 0V
Tj ≤ 85 °C
VEN = 0V
6.1.5
Current Consumption
Iq,off = II
6.1.6
Data Sheet
Iq,off
16
Rev. 1.0, 2010-11-30
TLE4699
Current Consumption
6.2
Typical Performance Characteristics Current Consumption
Current Consumption Iq vs.
Junction Temperature Tj
Current Consumption Iq vs.
Junction Temperature Tj
140
Iq -Tj .v s d
Iq [mA]
VI = 13 .5 V
10
Iq1 0 0 u _ Tj. v s d
Iq [µA]
IQ = 100 µA
VI = 13.5 V
IQ = 150 mA
100
IQ = 50 mA
1
80
60
IQ = 2 mA
0.1
40
0.01
-40 -20
0
20
40
60
80 100 120 140
0
-40
40
120
80
Tj [°C]
150
T j [°C]
Current Consumption Iq vs.
Output Current IQ
Current Consumption Iq vs.
Input Voltage VI
24
Iq -IQ .v s d
Iq [mA]
Iq -VI.v s d
Tj = 25 °C
Iq [mA]
10
16
RL = 50 Ω
1
12
VI = 13.5 V
T j = 125 °C
VI = 13 .5 V
Tj = 25 °C
RL = 500 Ω
8
0.1
4
0.01
0.2
1
10
100
0
IQ [mA]
Data Sheet
2
4
6
8
VI [V]
17
Rev. 1.0, 2010-11-30
TLE4699
Enable Function
7
Enable Function
7.1
Description Enable Function
The TLE4699 can be turned on or turned off via the EN Input. With voltage levels higher than VEN,high applied to
the EN Input the device will be completely turned on. A voltage level lower than VEN,low sets the device to low
quiescent current mode. In this condition the device is turned off and is not functional. The Enable Input has an
build in hysteresis to avoid toggling between ON/OFF state, if signals with slow slope are applied to the input.
7.2
Electrical Characteristics Enable Function
Electrical Characteristics: Enable Function
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
7.2.1
Enable
Low Signal Valid
VEN,low
–
–
0.8
V
–
7.2.2
Enable
High Signal Valid
VEN,high
2.4
–
–
V
VQ > VQ.min
7.2.3
Enable
Threshold Hysteresis
VEN,hyst
50
–
–
mV
–
7.2.4
Enable
Input current
IEN
–
1
2
µA
VEN = 5 V
7.2.5
Enable
internal pull-down resistor
REN
3.2
4.7
6.2
MΩ
–
Supply
+
II
I
IEN
EN
Q
IQ
Voltage Regulator
Regulated
Output Voltage
+
+
VI
CI
CQ
VEN
CurrentConsumption _ ParameterDefinition .vsd
VQ
LOAD
GND
IGND
Figure 6
Data Sheet
Parameter Definition
18
Rev. 1.0, 2010-11-30
TLE4699
Enable Function
7.3
Typical Performance Characteristics Enable Input
Enable Input Current IEN vs.
Enable Input Voltage VEN
Enable Input Current vs.
Junction Temperature Tj
60
3
IEN _ VEN .v s d
IEN [µA ]
T J = 25 °C
IEN [µA ]
40
2
30
1.5
20
1
10
0.5
0
10
20
30
40
-40
VEN [V ]
Data Sheet
IEN _Tj .v s d
VEN = 5 V
0
40
80
120
150
Tj [°C]
19
Rev. 1.0, 2010-11-30
TLE4699
Reset Function
8
Reset Function
8.1
Description Reset Function
The reset function contains several features:
Output Undervoltage Reset:
An output undervoltage condition is indicated by setting the reset output “RO” to “low”. This signal might be used
to reset a microcontroller during a low supply voltage condition.
Power-On Reset Delay Time
The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the
time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the
reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay
capacitor CD connected to pin “D”, which is charged up by the delay capacitor charge current ID,ch starting from
VD = 0 V.
In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay
capacitor’s value can be derived from the specified value given in Item 8.2.15:
t d,PWR-ON
C D = ----------------------------------- × 100 nF
t d,PWR-ON,100nF
with
td,PWR-ON: Desired power-on reset delay time
td,PWR-ON,100nF: Power-on reset delay time specified in Item 8.2.15
CD: Delay capacitor required
The formula is valid for CD ≥ 10 nF.For a precise calculation consider also the delay capacitor’s tolerance.
•
•
•
Undervoltage Reset Delay Time
Unlike the power-on reset delay time, the undervoltage reset delay td time considers a short output undervoltage
event, where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging
sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge
current ID,ch starting from VD = VDST,lo and the external delay capacitor CD.
A delay capacitor CD for a different undervoltage reset delay time as specified in Item 8.2.14 can be calculated
similar as above:
td
C D = ---------------- × 100 nF
t d,100nF
with
td: Desired reset delay time
td,100nF: Reset delay time specified in Item 8.2.14
CD: Delay capacitor required
The formula is valid for CD ≥ 10 nF.For a precise calculation consider also the delay capacitor’s tolerance.
•
•
•
Data Sheet
20
Rev. 1.0, 2010-11-30
TLE4699
Reset Function
Reset Reaction Time
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the
delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching
threshold VDST,lo, the reset output RO will be set to “low”.
Additionally to the delay capacitor discharge time trr,d an internal time trr,int applies. Hence the total reset reaction
time trr,total becomes:
t rr,total = t rr,int + t rr,d
with
•
•
•
trr,total: total reset reaction time
trr,int: Internal reset reaction time; see Item 8.2.16
trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 8.2.17, see
typical performance graphs.
Reset Output “RO”
The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO”
signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “RO” sink
current is limited, the optional external resistor RRO,ext must not below as specified in Item 8.2.8.
Reset Output “RO” Low for VQ ≥ 1 V
In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI
is 0 V. This is achieved by supplying the reset circuit from the output capacitor.
Reset Adjust Function
The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting
an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to
GND. The reset adjustment range is given in Item 8.2.6.
When dimensioning the voltage divider, take into consideration that there will be an additional current constantly
flowing through the resistors.
With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows
R ADJ, 1 + R ADJ, 2
V RT,new = V RADJ,th × ----------------------------------------R ADJ, 2
with
•
•
•
VRT,new: Desired reset switching threshold.
RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 7.
VRADJ,th: Reset adjust switching threshold given in Item 8.2.5.
Data Sheet
21
Rev. 1.0, 2010-11-30
TLE4699
Reset Function
I
Q
R RO
Int.
Supply
Control
VDD
CQ
RO
ID ,ch
Reset
IRO
VDST
VRADJ ,th
optional
Supply
OR
MicroController
RADJ ,1
RADJ
IRADJ
GND
opti onal
IDR ,dsch
D
BlockDiagram _ResetAdjust .vsd
GND
RADJ ,2
CD
Figure 7
Block Diagram Reset Circuit
VI
t
VQ
t < trr,blank
V RH
V RT,hi
V RT,lo
1V
t
td
VD
VDS T,hi
VDS T,lo
t
VRO
V RO,low
td
trr,total
td
t rr,total
td
t rr,total
1V
t
Thermal
Shutdown
Figure 8
Data Sheet
Input
Voltage Dip
Undervoltage
Spike at
output
Overload
T i mi n g Di a g ra m_ Re se t. vs
Timing Diagram Reset
22
Rev. 1.0, 2010-11-30
TLE4699
Reset Function
8.2
Electrical Characteristics Reset Function
Electrical Characteristics: Reset Function
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified).
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
Max.
Output Undervoltage Reset Comparator Default Values (Pin RADJ = GND)
8.2.1
Output Undervoltage Reset
Lower Switching Threshold
VRT,lo
4.6
4.7
4.8
V
VI = 0 V
VQ decreasing
RADJ = GND
8.2.2
Output Undervoltage Reset
Upper Switching Threshold
VRT,hi
4.7
4.8
4.9
V
VI within operating range
VQ increasing
RADJ = GND
8.2.3
Output Undervoltage Reset
Switching Hysteresis
VRT,hy
60
120
–
mV
VI within operating range
RADJ = GND.
8.2.4
Output Undervoltage Reset
Headroom
VRH
250
300
–
mV
Calculated Value:
VQ - VRT,lo
VI within operating range
IQ = 50 mA
RADJ = GND
Reset Threshold Adjustment
8.2.5
Reset Adjust
Lower Switching Threshold
VRADJ,th
1.17
1.195 1.22
V
VI = 0 V
3.2 V ≤ VQ < 5 V
8.2.6
Reset Adjustment Range 1)
VRT,range
3.20
–
4.70
V
–
Reset Output RO
8.2.7
Reset Output Low Voltage
VRO,low
–
0.2
0.4
V
VI = 0 V;
1 V ≤ VQ ≤ VRT,low
RRO,ext = 3.3 kΩ
8.2.8
Reset Output
External Pull-up Resistor
to Q
RRO,ext
3
–
–
kΩ
VI = 0 V;
1 V ≤ VQ ≤ VRT,low
VRO = 0.4 V
8.2.9
Reset Output
Internal Pull-up Resistor
RRO
20
30
40
kΩ
internally connected to Q
Reset Delay Timing
8.2.10
Upper Delay
Switching Threshold
VDST,hi
–
1.21
–
V
–
8.2.11
Lower Delay
Switching Threshold
VDST,lo
–
0.30
–
V
–
8.2.12
Delay Capacitor
Charge Current
ID,ch
–
3.5
–
μA
VD = 1 V
8.2.13
Delay Capacitor
Reset Discharge Current
IDR,dsch
–
80
–
mA
VD = 1 V
8.2.14
Undervoltage Reset Delay
Time
td,100nF
16
23
30
ms
Data Sheet
Calculated value;
CD = 100 nF 2);
CD discharged to VDST,lo
23
Rev. 1.0, 2010-11-30
TLE4699
Reset Function
Electrical Characteristics: Reset Function (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified).
Pos.
Parameter
Symbol
Limit Values
Min.
8.2.15
Power-on Reset Delay Time
td,PWR-ON,100nF 20
Typ.
Max.
31
40
Unit
ms
8.2.16
Internal Reset Reaction Time trr,int
–
9
15
μs
8.2.17
Delay Capacitor
Discharge Time
trr,d,100nF
–
1.5
3
μs
8.2.18
Total Reset Reaction Time
trr,total,100nF
–
10.5
18
μs
Conditions
Calculated value;
CD = 100 nF 2);
CD discharged to 0 V
CD = 0 nF
CD = 100 nF 2)
Calculated Value:
trr,d,100nF + trr,int;
CD = 100 nF 2)
1) Related Parameters (VRT,hi, VRT,hy) are scaled linear when the Reset Switching Threshold is modified.
2) For programming a different delay and reset reaction time, see Chapter 8.1.
8.3
Typical Performance Characteristics Reset Function
Reset Delay Time td, td,PWR-ON vs.
Delay Capacitor CD
Undervoltage Reset Switching Thresholds
VRT,lo, VRT,hi vs. Tj
VRT-Tj .v s d
td -CD .v s d
td ,
VQ [V],
VRT [V]
td ,PWR- ON
Pin RADJ = GND
[ms]
5.0
VQ
100
Output Undervoltage
Reset Headroom VRH
4,9
4,8
4,7
td (typ.)
VRT,hi
10
VRT,lo
-40 -20
0
20
40
60
1
10
80 100 120 140
Tj [°C]
Data Sheet
td,PWR-ON (typ.)
100
1000
CD [nF]
24
Rev. 1.0, 2010-11-30
TLE4699
Early Warning Function
9
Early Warning Function
9.1
Description Early Warning Function
The additional sense comparator provides an early warning function: Any voltage (e.g. the input voltage) can be
monitored, an undervoltage condition is indicated by setting the comparator’s output to low. The use of an external
voltage divider makes this comparator very flexible in the application.
+
RSI,1
C I1
I
Q
RSO
C I2
Control
+
RSI,2
CQ
SO
Px.x
I SO
V REF
SI
VMON
VDD
optiona l
Supply
MicroController
ISI
V SI
GND
GND
B loc k Diagram_S I.v s d
Figure 9
Diagram
VSI
VSI,high
VSI,low
t
VSO
tPD,SO;LH
tPD,SO;HL
tPD,SO;LH
H
L
t
SI_Tim ing_ Diagram . vsd
Figure 10
Data Sheet
Timing Diagram
25
Rev. 1.0, 2010-11-30
TLE4699
Early Warning Function
Early Warning Resistor Divider Adjust
The switching threshold can be set to the application’s needs by connecting an external voltage divider (RSI,1, RSI,2)
at pin “SI”. If the Early Warning function is not needed, it is recommend to connect the SI pin to the output voltage
pin Q.
When dimensioning the voltage divider, take into consideration that there will be an additional current constantly
flowing through the resistors.
With a voltage divider connected, the upper switching threshold for the monitored voltage VMON,high is calculated
as follows
R SI, 1 + R SI, 2
V MON,high = V SI,high × -------------------------------R SI, 2
with
•
•
•
VMON,high: Desired reset switching threshold.
RSI,1, RSI,2: Resistors of the external voltage divider, see Figure 9.
VSI,high: Sense threshold high given in Item 9.2.1.The lower switching threshold for the monitored voltage
VMON,low is calculated as follows
R SI, 1 + R SI, 2
V MON,low = V SI,low × -------------------------------R SI, 2
with
•
•
•
Vmon,high: Desired reset switching threshold.
RSI,1, RSI,2: Resistors of the external voltage divider, see Figure 9.
VSI,high: Reset adjust switching threshold given in Item 9.2.2.
Sense Output “SO”
The sense output “SO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “SO”
signal is desired, an external pull-up resistor to the output “Q” can be connected.
Data Sheet
26
Rev. 1.0, 2010-11-30
TLE4699
Early Warning Function
9.2
Electrical Characteristics Early Warning Function
Electrical Characteristics: Early Warning Function
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 9
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
1.22
1.25
1.28
V
–
1.16
1.185
1.21
V
–
–
65
–
mV
–
-1
0.1
1
µA
–
–
0.2
0.4
V
–
Sense Comparator Input
VSI,high
Sense threshold low
VSI,low
Sense input switching hysteresis VSI,hy
Sense input current
ISI
9.2.1
Sense threshold high
9.2.2
9.2.3
9.2.4
Sense Comparator Output
VSO,low
Maximum sink current capability ISO,max
Internal sense pull up resistor
RSO
Sense high reaction time
tPD,SO,HL
Sense low reaction time
tPD,SO,LH
9.2.5
Sense output low voltage
9.2.6
9.2.7
9.2.8
9.2.9
9.3
1.5
–
–
mA
–
10
20
40
kΩ
–
–
5
10
µs
–
–
5
10
µs
–
Typical Performance Characteristics Early Warning Function
Sense threshold VSI vs. Tj
VSI-Tj.v s d
VSI [V]
1,28
VSI,high
1,24
1,20
VSI,low
1,16
-40 -20
0
20 40
60
80 100 120 140
Tj [°C]
Data Sheet
27
Rev. 1.0, 2010-11-30
TLE4699
Package Outlines
10
Package Outlines
1.75 MAX.
C
1)
4 -0.2
B
1.27
0.64 ±0.25
0.1
2)
0.41+0.10
-0.06
6±0.2
0.2 M A B 14x
14
0.2 M C
8
1
7
1)
8.75 -0.2
8˚MAX.
0.19 +0.06
0.175 ±0.07
(1.47)
0.35 x 45˚
A
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01230
Figure 11
Outline PG-DSO-14
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
28
Rev. 1.0, 2010-11-30
TLE4699
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 12
Outline PG-SSOP-14 EP
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
29
Dimensions in mm
Rev. 1.0, 2010-11-30
TLE4699
Revision History
11
Revision History
Revision
Date
Changes
1.0
2010-11-30
Data sheet
Data Sheet
30
Rev. 1.0, 2010-11-30
Edition 2010-11-30
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.