TLE4699 Low Drop Out Linear Voltage Regulator 5 V Fixed Output Voltage Data Sheet Rev. 1.0, 2010-11-30 Automotive Power TLE4699 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 3.3 3.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4699GM (PG-DSO-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4699GM (PG-DSO-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4699E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4699E (PG-SSOP-14 EP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 5.1 5.2 5.3 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 7.1 7.2 7.3 Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 19 8 8.1 8.2 8.3 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 23 24 9 9.1 9.2 9.3 Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Early Warning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 27 27 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data Sheet 2 5 5 5 7 7 12 12 13 14 Rev. 1.0, 2010-11-30 Low Drop Out Linear Voltage Regulator 5 V Fixed Output Voltage 1 TLE4699 Overview Features • • • • • • • • • • • • • • • • • Output Voltage 5 V ± 2% Current Capability 200 mA Ultra Low Current Consumption Very Low Drop Out Voltage Enable Function: Below 1µA Current Consumption in off mode Reset Circuit Sensing the Output Voltage with Programmable Switching Threshold and Delay Time Reset Output Active Low Down to VQ = 1 V Integrated Early Warning Comparator Excellent Line Transient Robustness Maximum Input Voltage -42 V ≤ VI ≤ +45 V Reverse Polarity Protection Short Circuit Protected Overtemperature Shutdown Automotive Temperature Range -40 °C ≤ Tj ≤ 150 °C Available in a small thermally enhanced PG-SSOP-14 EP package Green Product (RoHS Compliant) AEC Qualified PG-DSO-14 PG-SSOP-14 EP Description The TLE4699 is a monolithic integrated low drop out fixed output voltage regulator for loads up to 200 mA. An input voltage of up to 45 V is regulated to an output voltage of 5 V. The integrated reset as well as several protection circuits, combined with a wide operating temperature range offered by the TLE4699 make it suitable for supplying microprocessor systems in automotive environments. The early warning function supervises the voltage at pin SI. Modifying the reset threshold is possible by an optional resistor divider. The TLE4699 is available in a PG-DSO-14 package which makes it pin-compatible to the TLE4299 as well as in a small thermally enhanced PG-SSOP-14 EP exposed pad package. Type Package Marking TLE4699GM PG-DSO-14 TLE4699 TLE4699E PG-SSOP-14 EP TLE4699 Data Sheet 3 Rev. 1.0, 2010-11-30 TLE4699 Block Diagram 2 Block Diagram j TLE4699 I Q Bandgap Reference SO Protection Circuits Reset EN RO Generator SI RADJ GND D Block_ diagram.vsd Figure 1 Data Sheet Block Diagram TLE4699 4 Rev. 1.0, 2010-11-30 TLE4699 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment TLE4699GM (PG-DSO-14) RADJ 1 14 SI D 2 13 I GND 3 12 GND GND 4 11 GND GND 5 10 GND EN 6 9 Q RO 7 8 SO PinConfig_PG-DSO-14.vsd Figure 2 Pin Configuration PG-DSO-14 Package (top view) 3.2 Pin Definitions and Functions TLE4699GM (PG-DSO-14) Pin Symbol Function 1 RADJ Reset Threshold Adjust Connect an external voltage divider to adjust reset threshold; Connect to GND for using internal threshold. 2 D Reset Delay Connect a ceramic capacitor from D (Pin 2) to GND for reset delay time adjustment; Leave open, if the reset function is not needed. 3, 4, 5 GND Ground Connect all pins to heat sink area. 6 EN Enable High signal enables the regulator; Low signal disables the regulator; Connect to I if the enable function is not needed 7 RO Reset Output Open collector output with an internal pull-up resistor to the output Q; An additional external pull-up resistor to the output Q is optional; Leave open if the reset function is not needed. 8 SO Sense Output Open collector output with an internal pull-up resistor to the output Q; An additional external pull-up resistor to the output Q is optional; Leave open if the sense function is not needed. 9 Q 5 V Regulator Output Connect a capacitor between Q (Pin 9) and GND close to the IC pins, respecting the values given for its capacitance CQ and ESR in the table Chapter 4.2 Functional Range. 10, 11, 12 GND Data Sheet Ground Connect all pins to heat sink area. 5 Rev. 1.0, 2010-11-30 TLE4699 Pin Configuration Pin Symbol Function 13 I Regulator Input and IC Supply for compensating line influences, a capacitor to GND close to the IC pin is recommended. 14 SI Sense Input Connect the voltage rail to be monitored; Connect to Q if the sense comparator is not needed. Data Sheet 6 Rev. 1.0, 2010-11-30 TLE4699 Pin Configuration 3.3 Pin Assignment TLE4699E RADJ n.c. D GND EN n.c. RO 1 2 3 4 5 6 7 14 13 12 11 10 9 8 SI I n.c. Q n.c. n.c. SO PINCONFIG_SSOP-14.VSD Figure 3 Pin Configuration PG-SSOP-14 EP Package (top view) 3.4 Pin Definitions and Functions TLE4699E (PG-SSOP-14 EP) Pin Symbol Function 1 RADJ Reset Threshold Adjust Connect an external voltage divider to adjust reset threshold; Connect to GND for using internal threshold. 3 D Reset Delay Connect a ceramic capacitor from D (Pin 3) to GND for reset delay time adjustment; Leave open, if the reset function is not needed. 4 GND Ground Connect to heat sink area. 5 EN Enable High signal enables the regulator; Low signal disables the regulator; Connect to I if the enable function is not needed 7 RO Reset Output Open collector output with an internal pull-up resistor to the output Q; An additional external pull-up resistor to the output Q is optional; Leave open if the reset function is not needed. 8 SO Sense Output Open collector output with an internal pull-up resistor to the output Q; An additional external pull-up resistor to the output Q is optional; Leave open if the sense function is not needed. 11 Q 5 V Regulator Output Connect a capacitor between Q (Pin 11) and GND close to the IC pins, respecting the values given for its capacitance CQ and ESR in the table Chapter 4.2 Functional Range. 13 I Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pin is recommended. 14 SI Sense Input Connect the voltage rail to be monitored; Connect to Q if the sense comparator is not needed. Data Sheet 7 Rev. 1.0, 2010-11-30 TLE4699 Pin Configuration Pin Symbol Function 2, 6, 9, 10, 12 n.c. Not connected Internally not connected; Connection to PCB GND recommended. PAD Exposed Pad Attach the exposed pad on package bottom to the heatsink area on circuit board; Connect to GND Data Sheet 8 Rev. 1.0, 2010-11-30 TLE4699 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. -42 45 V – -42 45 V – -42 45 V – -1 7 V – -0.3 7 V – -0.3 7 V – -0.3 7 V – -0.3 7 V – Tj Tstg -40 150 °C – -55 150 °C – VESD VESD -4 4 kV HBM 2) -1500 1500 V CDM 3) Voltage Rating VI 4.1.1 Regulator Input and IC Supply I 4.1.2 VEN Sense Input SI VSI Regulator Output Q VQ Sense Output SO VWI Reset Output RO VRO Reset Delay D VD Reset Switching Threshold VRADJ 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Enable Input EN Adjust RADJ Temperatures 4.1.9 Junction Temperature 4.1.10 Storage Temperature ESD Susceptibility 4.1.11 ESD Resistivity 4.1.12 ESD Resistivity 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to AEC-Q100-002-JESD 22-A114. 3) ESD susceptibility, Charged Device Model “CDM” according to ESDA STM5.3.1. Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 9 Rev. 1.0, 2010-11-30 TLE4699 General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.1 Input Voltage Range for Normal Operation VI(nor) VQ + Vdr 45 V 1) 4.2.2 Extended Input Voltage Range VI(ext) 3.3 45 V 2) 4.2.3 Input Voltage Transient Immunity dVI/dt -10 20 V/µs dVI ≤ 10 V; VI > 9 V; No trigger of RO.3) Tj -40 150 °C – CQ 10 – µF –4) 4.2.6 ESRCQ – 3 Ω –5) 1) For specification of the input voltage VQ and the drop out voltage Vdr see Chapter 5 Voltage Regulator. 4.2.4 Junction Temperature 4.2.5 Output Capacitor Requirements 2) The output voltage VQ will follow the input voltage, but is outside the specified range. For details see Chapter 5 Voltage Regulator. 3) Transient measured directly at the input pin. Not subject to production test, specified by design. 4) Not subject of production test, specified by design. The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30% 5) Relevant ESR value at f = 10 kHz Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Data Sheet 10 Rev. 1.0, 2010-11-30 TLE4699 General Product Characteristics 4.3 Pos. Thermal Resistance Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions TLE4699GM Package PG-DSO-14 4.3.1 Junction to Soldering Point1) RthJSP – 27 – K/W Pins 3-5 and 10-12 fixed to TA 4.3.2 Junction to Ambient RthJA – 112 – K/W Footprint only2) 4.3.3 – 73 – K/W 300 mm2 PCB heat sink area2) 4.3.4 – 65 – K/W 600 mm2 PCB heat sink area2) 4.3.5 – 63 – K/W 2s2p PCB 3) – 10 – K/W – – 140 – K/W Footprint only2) 4.3.8 – 63 – K/W 300 mm2 PCB heat sink area2) 4.3.9 – 53 – K/W 600 mm2 PCB heat sink area2) K/W 2s2p PCB3) TLE4699E Package PG-SSOP-14 EP 4.3.6 4.3.7 Junction to Soldering Point1) 1) Junction to Ambient RthJSP RthJA 4.3.10 47 1) Not subject to production test, specified by design 2) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu). 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Data Sheet 11 Rev. 1.0, 2010-11-30 TLE4699 Voltage Regulator 5 Voltage Regulator 5.1 Description Voltage Regulator The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in the table ““Functional Range” on Page 10 have to be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients. An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences. Connect the capacitors close to the IC terminals. Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of overtemperature. In order to avoid excessive power dissipation that could never be handled by the pass element and the package, the maximum output current is decreased at input voltages above VI = 22 V. The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, a junction temperature above 150 °C is outside the maximum rating and therefore reduces the IC lifetime. The TLE4699 allows a negative supply voltage. However, several small currents are flowing into the IC increasing its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection circuit is not operating during reverse polarity condition. II Supply I Q + VI + Saturation Control Current Limitation CQ CI Bandgap Reference Temperature Shutdown V VQ,nom VI(ext),min Data Sheet LOAD Block Diagram Voltage Regulator Circuit VI Vdr VQ dVQ Iload ≈ CQ dt Diagram_Output-InputVoltage.svg Figure 5 VQ GND BlockDiagram _VoltageRegulator .vsd Figure 4 Regulated Output Voltage IQ dVQ IQ,max - Iload ≈ CQ dt t Output Voltage vs. Input Voltage 12 Rev. 1.0, 2010-11-30 TLE4699 Voltage Regulator 5.2 Electrical Characteristics Voltage Regulator Electrical Characteristics: Voltage Regulator VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 4 (unless otherwise specified) Pos. Parameter Symbol 5.2.1 Output Voltage VQ Limit Values Min. Typ. Max. 4.9 5.0 5.1 Unit Conditions V 0 mA ≤ IQ ≤ 200 mA; 8 V ≤ VI ≤ 18 V 5.2.2 0 mA ≤ IQ ≤ 150 mA; 6 V ≤ VI ≤ 18 V 5.2.3 0 mA ≤ IQ ≤ 100 mA; 18V ≤ VI ≤ 32 V Tj ≤ 105 °C 1) 2) 5.2.4 0 mA ≤ IQ ≤ 10 mA; 32 V ≤ VI ≤ 45 V Tj ≤ 105 °C 1) 2) 5.2.5 0.3 mA ≤ IQ ≤ 100 mA; 18 V ≤ VI ≤ 32 V 1) 5.2.6 0.3 mA ≤ IQ ≤ 10 mA; 32 V ≤ VI ≤ 45 V 1) 5.2.7 Load Regulation steady-state |dVQ,load| – 5 30 mV 5.2.16 Overtemperature Shutdown Threshold Tj,sd 151 – 200 °C IQ = 1 mA to 150 mA; VI = 6 V VI = 6 V to 32 V; IQ = 5 mA fripple = 100 Hz; Vripple = 1 Vpp 2) IQ = 50 mA 3) IQ = 150 mA 3) 0 V ≤ VQ ≤ 4.8 V VI = 0 V; VQ = 5 V VI = -16 V; VQ = 0 V VI = -42 V; VQ = 0 V Tj increasing 2) 5.2.8 Line Regulation steady-state |dVQ,line| – 2 20 mV 5.2.9 Power Supply Ripple Rejection PSRR 60 65 – dB 5.2.10 Drop out Voltage Vdr – 90 200 mV 5.2.11 Vdr = VI - VQ – 160 350 mV 5.2.12 Output Current Limitation 201 350 500 mA 5.2.13 Reverse Current -1.5 -0.7 – mA 5.2.14 Reverse Current at Negative Input Voltage 5.2.17 Overtemperature Shutdown Threshold Hysteresis Tj,hy – 20 – K Tj decreasing 2) 5.2.15 IQ,max IQ II -2 -1 – mA -5 -3,5 – mA 1) See typical performance graph for details. 2) Parameter not subject to production test; specified by design. 3) Measured when the output voltage VQ has dropped 100 mV from its nominal value. Data Sheet 13 Rev. 1.0, 2010-11-30 TLE4699 Voltage Regulator 5.3 Typical Performance Characteristics Voltage Regulator Output Voltage VQ vs. Junction Temperature Tj Output Capacitor Series Resistor ESRCQ vs. Output Current IQ VQ -Tj. v s d 100 VQ [V] ESR 1 0 u-IQ .v s d ESRCQ C Q ≥ 10 µF; 6 V ≤ VI ≤ 28 V; -40 °C ≤ Tj ≤ 150 °C [Ω] 10 5.02 5.00 1 Stable Region 4.98 0 .1 4.96 -40 -20 0 20 40 60 0.01 80 100 120 140 T j [°C] 0 40 80 120 160 IQ [mA] Output Current Limitation IQ,max vs. Input Voltage V I SO A.v s d IQ,ma x [mA] 400 Tj = 25 °C T j = 125 °C 300 200 100 0 10 20 30 40 VI [V] Data Sheet 14 Rev. 1.0, 2010-11-30 TLE4699 Voltage Regulator Dropout Voltage Vdr vs. Output Current IQ Dropout Voltage Vdr vs. Junction Temperature Tj 300 Vd r- IQ.v s d Vdr [mV] Vd r- Tj. v s d Vdr [mV] IQ = 150 mA 200 200 T j = 125 °C 100 150 100 50 T j = 25 °C 20 IQ = 50 mA IQ = 200 µA 0.2 1 10 0 -40 -20 100 20 40 60 80 100 120 140 IQ [mA] Tj [°C] Reverse Output Current IQ vs. Output Voltage VQ Reverse Current II vs. Input Voltage VI 0 0 IQ-VQ @ VI=0 v. s d IQ [mA] VI = 0 V II [mA] -0.4 II-VI@VQ =0 .v s d VQ = 0 V -1 T j = -40 °C -0.6 -1.5 T j = 150 °C Tj = -40 °C -2 -0.8 Tj = 25 °C -2.5 T j = 150 °C 0 1.6 3.2 4 .8 6 -32 V Q [V] Data Sheet - 24 -16 -8 0 VI [V] 15 Rev. 1.0, 2010-11-30 TLE4699 Current Consumption 6 Current Consumption 6.1 Electrical Characteristics Current Consumption Electrical Characteristics: Current Consumption VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6 “Parameter Definition” on Page 18 (unless otherwise specified) Pos. Parameter Symbol 6.1.1 Current Consumption Iq = II - IQ Iq,on Limit Values Min. Typ. Max. – 65 100 Unit Conditions μA IQ ≤ 200 μA; Tj ≤ 25 °C Enable on 6.1.2 – 80 105 μA IQ ≤ 200 μA; Tj ≤ 85 °C Enable on 6.1.3 – 1.0 2.0 mA IQ = 50 mA Enable on 6.1.4 – 5 10 mA IQ = 150 mA Enable on – – 1 μA – – 2 μA Tj ≤ 25 °C VEN = 0V Tj ≤ 85 °C VEN = 0V 6.1.5 Current Consumption Iq,off = II 6.1.6 Data Sheet Iq,off 16 Rev. 1.0, 2010-11-30 TLE4699 Current Consumption 6.2 Typical Performance Characteristics Current Consumption Current Consumption Iq vs. Junction Temperature Tj Current Consumption Iq vs. Junction Temperature Tj 140 Iq -Tj .v s d Iq [mA] VI = 13 .5 V 10 Iq1 0 0 u _ Tj. v s d Iq [µA] IQ = 100 µA VI = 13.5 V IQ = 150 mA 100 IQ = 50 mA 1 80 60 IQ = 2 mA 0.1 40 0.01 -40 -20 0 20 40 60 80 100 120 140 0 -40 40 120 80 Tj [°C] 150 T j [°C] Current Consumption Iq vs. Output Current IQ Current Consumption Iq vs. Input Voltage VI 24 Iq -IQ .v s d Iq [mA] Iq -VI.v s d Tj = 25 °C Iq [mA] 10 16 RL = 50 Ω 1 12 VI = 13.5 V T j = 125 °C VI = 13 .5 V Tj = 25 °C RL = 500 Ω 8 0.1 4 0.01 0.2 1 10 100 0 IQ [mA] Data Sheet 2 4 6 8 VI [V] 17 Rev. 1.0, 2010-11-30 TLE4699 Enable Function 7 Enable Function 7.1 Description Enable Function The TLE4699 can be turned on or turned off via the EN Input. With voltage levels higher than VEN,high applied to the EN Input the device will be completely turned on. A voltage level lower than VEN,low sets the device to low quiescent current mode. In this condition the device is turned off and is not functional. The Enable Input has an build in hysteresis to avoid toggling between ON/OFF state, if signals with slow slope are applied to the input. 7.2 Electrical Characteristics Enable Function Electrical Characteristics: Enable Function VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6 (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 7.2.1 Enable Low Signal Valid VEN,low – – 0.8 V – 7.2.2 Enable High Signal Valid VEN,high 2.4 – – V VQ > VQ.min 7.2.3 Enable Threshold Hysteresis VEN,hyst 50 – – mV – 7.2.4 Enable Input current IEN – 1 2 µA VEN = 5 V 7.2.5 Enable internal pull-down resistor REN 3.2 4.7 6.2 MΩ – Supply + II I IEN EN Q IQ Voltage Regulator Regulated Output Voltage + + VI CI CQ VEN CurrentConsumption _ ParameterDefinition .vsd VQ LOAD GND IGND Figure 6 Data Sheet Parameter Definition 18 Rev. 1.0, 2010-11-30 TLE4699 Enable Function 7.3 Typical Performance Characteristics Enable Input Enable Input Current IEN vs. Enable Input Voltage VEN Enable Input Current vs. Junction Temperature Tj 60 3 IEN _ VEN .v s d IEN [µA ] T J = 25 °C IEN [µA ] 40 2 30 1.5 20 1 10 0.5 0 10 20 30 40 -40 VEN [V ] Data Sheet IEN _Tj .v s d VEN = 5 V 0 40 80 120 150 Tj [°C] 19 Rev. 1.0, 2010-11-30 TLE4699 Reset Function 8 Reset Function 8.1 Description Reset Function The reset function contains several features: Output Undervoltage Reset: An output undervoltage condition is indicated by setting the reset output “RO” to “low”. This signal might be used to reset a microcontroller during a low supply voltage condition. Power-On Reset Delay Time The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD connected to pin “D”, which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V. In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Item 8.2.15: t d,PWR-ON C D = ----------------------------------- × 100 nF t d,PWR-ON,100nF with td,PWR-ON: Desired power-on reset delay time td,PWR-ON,100nF: Power-on reset delay time specified in Item 8.2.15 CD: Delay capacitor required The formula is valid for CD ≥ 10 nF.For a precise calculation consider also the delay capacitor’s tolerance. • • • Undervoltage Reset Delay Time Unlike the power-on reset delay time, the undervoltage reset delay td time considers a short output undervoltage event, where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge current ID,ch starting from VD = VDST,lo and the external delay capacitor CD. A delay capacitor CD for a different undervoltage reset delay time as specified in Item 8.2.14 can be calculated similar as above: td C D = ---------------- × 100 nF t d,100nF with td: Desired reset delay time td,100nF: Reset delay time specified in Item 8.2.14 CD: Delay capacitor required The formula is valid for CD ≥ 10 nF.For a precise calculation consider also the delay capacitor’s tolerance. • • • Data Sheet 20 Rev. 1.0, 2010-11-30 TLE4699 Reset Function Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching threshold VDST,lo, the reset output RO will be set to “low”. Additionally to the delay capacitor discharge time trr,d an internal time trr,int applies. Hence the total reset reaction time trr,total becomes: t rr,total = t rr,int + t rr,d with • • • trr,total: total reset reaction time trr,int: Internal reset reaction time; see Item 8.2.16 trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 8.2.17, see typical performance graphs. Reset Output “RO” The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “RO” sink current is limited, the optional external resistor RRO,ext must not below as specified in Item 8.2.8. Reset Output “RO” Low for VQ ≥ 1 V In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI is 0 V. This is achieved by supplying the reset circuit from the output capacitor. Reset Adjust Function The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to GND. The reset adjustment range is given in Item 8.2.6. When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors. With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows R ADJ, 1 + R ADJ, 2 V RT,new = V RADJ,th × ----------------------------------------R ADJ, 2 with • • • VRT,new: Desired reset switching threshold. RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 7. VRADJ,th: Reset adjust switching threshold given in Item 8.2.5. Data Sheet 21 Rev. 1.0, 2010-11-30 TLE4699 Reset Function I Q R RO Int. Supply Control VDD CQ RO ID ,ch Reset IRO VDST VRADJ ,th optional Supply OR MicroController RADJ ,1 RADJ IRADJ GND opti onal IDR ,dsch D BlockDiagram _ResetAdjust .vsd GND RADJ ,2 CD Figure 7 Block Diagram Reset Circuit VI t VQ t < trr,blank V RH V RT,hi V RT,lo 1V t td VD VDS T,hi VDS T,lo t VRO V RO,low td trr,total td t rr,total td t rr,total 1V t Thermal Shutdown Figure 8 Data Sheet Input Voltage Dip Undervoltage Spike at output Overload T i mi n g Di a g ra m_ Re se t. vs Timing Diagram Reset 22 Rev. 1.0, 2010-11-30 TLE4699 Reset Function 8.2 Electrical Characteristics Reset Function Electrical Characteristics: Reset Function VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified). Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions Max. Output Undervoltage Reset Comparator Default Values (Pin RADJ = GND) 8.2.1 Output Undervoltage Reset Lower Switching Threshold VRT,lo 4.6 4.7 4.8 V VI = 0 V VQ decreasing RADJ = GND 8.2.2 Output Undervoltage Reset Upper Switching Threshold VRT,hi 4.7 4.8 4.9 V VI within operating range VQ increasing RADJ = GND 8.2.3 Output Undervoltage Reset Switching Hysteresis VRT,hy 60 120 – mV VI within operating range RADJ = GND. 8.2.4 Output Undervoltage Reset Headroom VRH 250 300 – mV Calculated Value: VQ - VRT,lo VI within operating range IQ = 50 mA RADJ = GND Reset Threshold Adjustment 8.2.5 Reset Adjust Lower Switching Threshold VRADJ,th 1.17 1.195 1.22 V VI = 0 V 3.2 V ≤ VQ < 5 V 8.2.6 Reset Adjustment Range 1) VRT,range 3.20 – 4.70 V – Reset Output RO 8.2.7 Reset Output Low Voltage VRO,low – 0.2 0.4 V VI = 0 V; 1 V ≤ VQ ≤ VRT,low RRO,ext = 3.3 kΩ 8.2.8 Reset Output External Pull-up Resistor to Q RRO,ext 3 – – kΩ VI = 0 V; 1 V ≤ VQ ≤ VRT,low VRO = 0.4 V 8.2.9 Reset Output Internal Pull-up Resistor RRO 20 30 40 kΩ internally connected to Q Reset Delay Timing 8.2.10 Upper Delay Switching Threshold VDST,hi – 1.21 – V – 8.2.11 Lower Delay Switching Threshold VDST,lo – 0.30 – V – 8.2.12 Delay Capacitor Charge Current ID,ch – 3.5 – μA VD = 1 V 8.2.13 Delay Capacitor Reset Discharge Current IDR,dsch – 80 – mA VD = 1 V 8.2.14 Undervoltage Reset Delay Time td,100nF 16 23 30 ms Data Sheet Calculated value; CD = 100 nF 2); CD discharged to VDST,lo 23 Rev. 1.0, 2010-11-30 TLE4699 Reset Function Electrical Characteristics: Reset Function (cont’d) VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified). Pos. Parameter Symbol Limit Values Min. 8.2.15 Power-on Reset Delay Time td,PWR-ON,100nF 20 Typ. Max. 31 40 Unit ms 8.2.16 Internal Reset Reaction Time trr,int – 9 15 μs 8.2.17 Delay Capacitor Discharge Time trr,d,100nF – 1.5 3 μs 8.2.18 Total Reset Reaction Time trr,total,100nF – 10.5 18 μs Conditions Calculated value; CD = 100 nF 2); CD discharged to 0 V CD = 0 nF CD = 100 nF 2) Calculated Value: trr,d,100nF + trr,int; CD = 100 nF 2) 1) Related Parameters (VRT,hi, VRT,hy) are scaled linear when the Reset Switching Threshold is modified. 2) For programming a different delay and reset reaction time, see Chapter 8.1. 8.3 Typical Performance Characteristics Reset Function Reset Delay Time td, td,PWR-ON vs. Delay Capacitor CD Undervoltage Reset Switching Thresholds VRT,lo, VRT,hi vs. Tj VRT-Tj .v s d td -CD .v s d td , VQ [V], VRT [V] td ,PWR- ON Pin RADJ = GND [ms] 5.0 VQ 100 Output Undervoltage Reset Headroom VRH 4,9 4,8 4,7 td (typ.) VRT,hi 10 VRT,lo -40 -20 0 20 40 60 1 10 80 100 120 140 Tj [°C] Data Sheet td,PWR-ON (typ.) 100 1000 CD [nF] 24 Rev. 1.0, 2010-11-30 TLE4699 Early Warning Function 9 Early Warning Function 9.1 Description Early Warning Function The additional sense comparator provides an early warning function: Any voltage (e.g. the input voltage) can be monitored, an undervoltage condition is indicated by setting the comparator’s output to low. The use of an external voltage divider makes this comparator very flexible in the application. + RSI,1 C I1 I Q RSO C I2 Control + RSI,2 CQ SO Px.x I SO V REF SI VMON VDD optiona l Supply MicroController ISI V SI GND GND B loc k Diagram_S I.v s d Figure 9 Diagram VSI VSI,high VSI,low t VSO tPD,SO;LH tPD,SO;HL tPD,SO;LH H L t SI_Tim ing_ Diagram . vsd Figure 10 Data Sheet Timing Diagram 25 Rev. 1.0, 2010-11-30 TLE4699 Early Warning Function Early Warning Resistor Divider Adjust The switching threshold can be set to the application’s needs by connecting an external voltage divider (RSI,1, RSI,2) at pin “SI”. If the Early Warning function is not needed, it is recommend to connect the SI pin to the output voltage pin Q. When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors. With a voltage divider connected, the upper switching threshold for the monitored voltage VMON,high is calculated as follows R SI, 1 + R SI, 2 V MON,high = V SI,high × -------------------------------R SI, 2 with • • • VMON,high: Desired reset switching threshold. RSI,1, RSI,2: Resistors of the external voltage divider, see Figure 9. VSI,high: Sense threshold high given in Item 9.2.1.The lower switching threshold for the monitored voltage VMON,low is calculated as follows R SI, 1 + R SI, 2 V MON,low = V SI,low × -------------------------------R SI, 2 with • • • Vmon,high: Desired reset switching threshold. RSI,1, RSI,2: Resistors of the external voltage divider, see Figure 9. VSI,high: Reset adjust switching threshold given in Item 9.2.2. Sense Output “SO” The sense output “SO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “SO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Data Sheet 26 Rev. 1.0, 2010-11-30 TLE4699 Early Warning Function 9.2 Electrical Characteristics Early Warning Function Electrical Characteristics: Early Warning Function VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 9 (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. 1.22 1.25 1.28 V – 1.16 1.185 1.21 V – – 65 – mV – -1 0.1 1 µA – – 0.2 0.4 V – Sense Comparator Input VSI,high Sense threshold low VSI,low Sense input switching hysteresis VSI,hy Sense input current ISI 9.2.1 Sense threshold high 9.2.2 9.2.3 9.2.4 Sense Comparator Output VSO,low Maximum sink current capability ISO,max Internal sense pull up resistor RSO Sense high reaction time tPD,SO,HL Sense low reaction time tPD,SO,LH 9.2.5 Sense output low voltage 9.2.6 9.2.7 9.2.8 9.2.9 9.3 1.5 – – mA – 10 20 40 kΩ – – 5 10 µs – – 5 10 µs – Typical Performance Characteristics Early Warning Function Sense threshold VSI vs. Tj VSI-Tj.v s d VSI [V] 1,28 VSI,high 1,24 1,20 VSI,low 1,16 -40 -20 0 20 40 60 80 100 120 140 Tj [°C] Data Sheet 27 Rev. 1.0, 2010-11-30 TLE4699 Package Outlines 10 Package Outlines 1.75 MAX. C 1) 4 -0.2 B 1.27 0.64 ±0.25 0.1 2) 0.41+0.10 -0.06 6±0.2 0.2 M A B 14x 14 0.2 M C 8 1 7 1) 8.75 -0.2 8˚MAX. 0.19 +0.06 0.175 ±0.07 (1.47) 0.35 x 45˚ A Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area GPS01230 Figure 11 Outline PG-DSO-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet 28 Rev. 1.0, 2010-11-30 TLE4699 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 Figure 12 Outline PG-SSOP-14 EP Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on packages, please visit our website: http://www.infineon.com/packages. Data Sheet 29 Dimensions in mm Rev. 1.0, 2010-11-30 TLE4699 Revision History 11 Revision History Revision Date Changes 1.0 2010-11-30 Data sheet Data Sheet 30 Rev. 1.0, 2010-11-30 Edition 2010-11-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.