VISHAY ILQ615

ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Optocoupler, Phototransistor Output (Dual, Quad Channel)
Features
• Identical Channel to Channel Footprint
• Dual and Quad Packages Feature:
- Reduced Board Space
- Lower Pin and Parts Count
- Better Channel to Channel CTR Match
- Improved Common Mode Rejection
• Isolation Test Voltage from Double Molded Package, 5300 VRMS
• Lead-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Dual Channel
Quad Channel
Agency Approvals
• UL1577, File No. E52744 System Code H or J,
Double Protection
• CSA 93751
• BSI IEC60950 IEC60965
• DIN EN 60747-5-2 (VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
A 1
8 C
C 2
7 E
A 3
6 C
C 4
5 E
A 1
16 C
C 2
15 E
A
3
14 C
C
4
13 E
A
5
12 C
C
6
11 E
A
7
10 C
C 8
9 E
i179052
Description
The ILD615/ ILQ615 are multi-channel phototransistor optocouplers that use GaAs IRLED emitters and
high gain NPN phototransistors. These devices are
constructed using over/under leadframe optical coupling and double molded insulation technology resulting a withstand test voltage of 7500 VACPEAK and a
working voltage of 1700 VRMS.
The binned min./max. and linear CTR characteristics
make these devices well suited for DC or AC voltage
detection. Eliminating the phototransistor base connection provides added electrical noise immunity from
the transients found in many industrial control environments.
Because of guaranteed maximum non-saturated and
saturated switching characteristics, the ILD615/
ILQ615 can be used in medium speed data I/O and
control systems. The binned min./max. CTR specification allow easy worst case interface calculations for
Document Number 83652
Rev. 1.3, 19-Apr-04
both level detection and switching applications. Interfacing with a CMOS logic is enhanced by the guaranteed CTR at IF = 1.0 mA.
www.vishay.com
1
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Order Information
Part
Remarks
ILD615-1
CTR 40 - 80 %, Dual Channel, DIP-8
ILD615-2
CTR 63 - 125 %, Dual Channel, DIP-8
ILD615-3
CTR 100 - 200 %, Dual Channel, DIP-8
ILD615-4
CTR 160 - 320 %, Dual Channel, DIP-8
ILQ615-1
CTR 40 - 80 %, Quad Channel, DIP-16
ILQ615-2
CTR 63 - 125 %, Quad Channel, DIP-16
ILQ615-3
CTR 100 - 200 %, Quad Channel, DIP-16
ILQ615-4
CTR 160 - 320 %, Quad Channel, DIP-16
ILD615-1X007
CTR 40 - 80 %, Dual Channel, SMD-8
(option 7)
ILD615-2X006
CTR 63 - 125 %, Dual Channel, DIP-8 400
mil (option 6)
ILD615-2X009
CTR 63 - 125 %, Dual Channel, SMD-8
(option 9)
ILD615-3X006
CTR 100 - 200 %, Dual Channel, DIP-8
400 mil (option 6)
ILD615-3X007
CTR 100 - 200 %, Dual Channel, SMD-8
(option 7)
ILD615-3X009
CTR 100 - 200 %, Dual Channel, SMD-8
(option 9)
ILD615-4X006
CTR 160 - 320 %, Dual Channel, DIP-8
400 mil (option 6)
ILD615-4X009
CTR 160 - 320 %, Dual Channel, SMD-8
(option 9)
ILQ615-1X009
CTR 40 - 80 %, Quad Channel, SMD-16
(option 9)
ILQ615-2X007
CTR 63 - 125 %, Quad Channel, SMD-16
(option 7)
ILQ615-3X006
CTR 100 - 200 %, Quad Channel, DIP-16
400 mil (option 6)
ILQ615-3X009
CTR 100 - 200 %, Quad Channel, SMD-16
(option 9)
ILQ615-4X007
CTR 160 - 320 %, Quad Channel, SMD-16
(option 7)
ILQ615-4X009
CTR 160 - 320 %, Quad Channel, SMD-16
(option 9)
For additional information on the available options refer to
Option Information.
www.vishay.com
2
Document Number 83652
Rev. 1.3, 19-Apr-04
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Symbol
Value
Reverse voltage
Parameter
Test condition
VR
6.0
V
Forward current
IF
60
mA
Surge current
IFSM
1.5
A
Power dissipation
Pdiss
Derate linearly from 25 °C
Unit
100
mW
1.33
mW/°C
Output
Symbol
Value
Unit
Collector-emitter breakdown
voltage
Parameter
Test condition
BVCEO
70
V
Emitter-collector breakdown
voltage
BVECO
7.0
V
Collector current
t < 1.0 ms
Power dissipation
IC
50
mA
IC
100
mA
Pdiss
150
mW
2.0
mW/°C
Derate linearly from 25 °C
Coupler
Symbol
Value
Unit
Storage temperature
Parameter
Test condition
Tstg
- 55 to + 150
°C
Operating temperature
Tamb
- 55 to + 100
°C
Tj
100
°C
Tsld
260
°C
Package power dissipation,
ILD615
400
mW
Derate linearly from 25 °C
5.33
mW/°C
Package power dissipation,
ILQ615
500
mW
Junction temperature
Soldering temperature
2.0 mm distance from case
bottom
Derate linearly from 25 °C
6.67
mW/°C
5300
VRMS
Creepage
≥ 7.0
mm
Clearance
≥ 7.0
mm
Isolation test voltage
Isolation resistance
Document Number 83652
Rev. 1.3, 19-Apr-04
t = 1.0 sec.
VISO
VIO = 500 V, Tamb = 25 °C
RIO
VIO = 500 V, Tamb = 100 °C
RIO
≥
1012
Ω
11
Ω
≥ 10
www.vishay.com
3
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Symbol
Min
Typ.
Max
Forward voltage
Parameter
IF = 10 mA
Test condition
VF
1.0
1.15
1.3
Breakdown voltage
IR = 10 µA
VBR
6.0
30
Unit
V
V
µA
Reverse current
VR = 6.0 V
IR
0.01
Capacitance
VR = 0 V, f = 1.0 MHz
CO
25
pF
RTHJL
750
K/W
Thermal resistance, junction to
lead
10
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
2.0
50
nA
5.0
100
nA
Collector-emitter capacitance
VCE = 5.0 V, f = 1.0 MHz
CCE
6.8
Collector-emitter leakage
current, -1, -2
VCE = 10 V
ICEO
Collector-emitter leakage
current, -3, -4
VCE = 10 V
ICEO
Collector-emitter breakdown
voltage
ICE = 0.5 mA
BVCEO
70
V
Emitter-collector breakdown
voltage
IE = 0.1 mA
BVECO
7.0
V
Thermal resistance, junction to
lead
pF
500
RTHJL
K/W
Package transfer characteristics
Channel/Channel CTR match
IF = 10 mA, VCE = 5.0 V
CTRX/
CTRY
1 to 1
Symbol
Min
2 to 1
Coupler
Parameter
Test condition
Capacitance (input-output)
VIO = 0 V, f = 1.0 MHz
CIO
Insulation resistance
VIO = 500 V, TA = 25 °C
RS
Channel to channel isolation
Typ.
Max
Unit
0.8
1012
pF
Ω
1014
500
VAC
Current Transfer Ratio
Parameter
Current Transfer Ratio
(collector-emitter saturated)
www.vishay.com
4
Test condition
IF = 10 mA, VCE = 0.4 V
Part
Symbol
ILD615-1
ILQ615-1
CTRCEsat
Min
Typ.
25
Max
Unit
%
ILD615-2
ILQ615-2
CTRCEsat
40
%
ILD615-3
ILQ615-3
CTRCEsat
60
%
ILD615-4
ILQ615-4
CTRCEsat
100
%
Document Number 83652
Rev. 1.3, 19-Apr-04
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Parameter
Test condition
Current Transfer Ratio
(collector-emitter)
Part
Symbol
Min
Typ.
Max
Unit
IF = 10 mA, VCE = 5.0 V
ILD615-1
ILQ615-1
CTRCE
40
60
80
%
IF = 1.0 mA, VCE = 5.0 V
ILD615-2
ILQ615-2
CTRCE
13
30
IF = 10 mA, VCE = 5.0 V
ILD615-3
ILQ615-3
CTRCE
63
80
IF = 1.0 mA, VCE = 5.0 V
ILD615-4
ILQ615-4
CTRCE
22
45
IF = 10 mA, VCE = 5.0 V
ILD615-1
ILQ615-1
CTRCE
100
150
IF = 1.0 mA, VCE = 5.0 V
ILD615-2
ILQ615-2
CTRCE
34
70
IF = 10 mA, VCE = 5.0 V
ILD615-3
ILQ615-3
CTRCE
160
200
IF = 1.0 mA, VCE = 5.0 V
ILD615-4
ILQ615-4
CTRCE
56
90
%
125
%
%
200
%
%
320
%
%
Switching Non-saturated
Parameter
Current
Turn-on time
Rise time
Turn-off time
Fall time
Propagation
H-L
Propagation
L-H
tPLH
VCC = 5.0 V, RL = 75 Ω, 50 % of VPP
Test condition
Symbol
IF
ton
tr
toff
tf
tPHL
Unit
mA
µs
µs
µs
µs
µs
µs
ILD615-1
10
3.0
2.0
2.3
2.0
1.1
2.5
Current
Turn-on time
Rise time
Turn-off time
Fall time
Propagation
H-L
Propagation
L-H
Symbol
IF
ton
tPHL
tPLH
Switching Saturated
Parameter
Test condition
VCC = 5.0 V, RL = 1.0 kΩ, VTH = 1.5 V
tr
toff
tf
Unit
mA
µs
µs
µs
µs
µs
µs
ILD615-1
ILQ615-1
20
3.0
2.0
18
11
1.6
8.6
ILD615-2
ILQ615-2
10
4.3
2.8
25
14
2.6
7.2
ILD615-3
ILQ615-3
10
4.3
2.8
25
14
2.6
7.2
ILD615-4
ILQ615-4
5.0
6.0
4.6
25
15
5.4
7.4
Common Mode Transient Immunity
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Common mode rejection output
high
VCM = 50 VP-P, RL = 1.0 kΩ,
IF = 0 mA
CMH
5000
V/µs
Common mode rejection output
low
VCM = 50 VP-P, RL = 1.0 kΩ,
IF = 10 mA
CML
5000
V/µs
CCM
0.01
pF
Common mode coupling
capacitance
Document Number 83652
Rev. 1.3, 19-Apr-04
www.vishay.com
5
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
IF
VCC = 5 V
IF = 10 mA
F = 10 KHz,
DF = 50%
VO
tD
tR
VO
RL = 75 Ω
t PLH
VTH = 1.5 V
tF
tS
t PHL
iild615_01
iild615_04
Figure 1. Non-saturated Switching Timing
Figure 4. Saturated Switching Timing
F = 10 KHz,
DF = 50%
IF - Maximum LED Current - mA
120
VCC = 5 V
RL
VO
100
80
60
TJ (MAX) = 100 °C
40
20
0
-60
iild615_02
-40
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
iild615_05
Figure 2. Saturated Switching Timing
Figure 5. Maximum LED Current vs. Ambient Temperature
200
tPLH
VO
tPLH
tS
50%
tD
iild615_03
toff
Figure 3. Non-saturated Switching Timing
www.vishay.com
6
150
100
50
0
-60 -40
tF
tR
ton
PLED - LED Power - mW
IF
iild615_06
-20
0
20
40
60
Ta - Ambient Temperature - °C
80
100
Figure 6. Maximum LED Power Dissipation
Document Number 83652
Rev. 1.3, 19-Apr-04
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
1000
VF - Forward Voltage - V
1. 3
ICE - Collector Current - mA
1.4
Ta = –55 °C
1.2
Ta = 25 °C
1.1
1.0
0.9
Ta = 85° C
0.8
10
25 °C
50 °C
75 °C
90 °C
1
.1
.1
0.7
.1
1
10
IF - Forward Current - mA
100
10
1
VCE - Collector-Emitter Voltage - V
100
iild615_10
iild615_07
Figure 10. Maximum Collector Current vs. Collector Voltage
10000
CTRNF - Normalized CTR Factor
Figure 7. Forward Voltage vs. Forward Current
If(pk) - Peak LED Current - mA
Rth = 500 °C/W
100
τˇ
Duty F actor
.005
.01
.02
.05
.1
.2
.5
1000
100
t
τ
DF = /t
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 25 °C
0.0
.1
10
10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1
1
10
IF - LED Current - mA
100
t - LED Pulse Duration - s
iild615_08
iild615_11
200
PDET - Detector Power - mW
Figure 11. Normalization Factor for Non-saturated and Saturated
CTR vs. IF
CTRNF - Normalized CTR Factor
Figure 8. Peak LED Current vs. Pulse Duration, Tau
150
100
50
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 50 °C
0.0
.1
0
-60
-40
-20
0
20
40
60
80
100
1
10
IF - LED Current - mA
100
Ta - Ambient Temperature - °C
iild615_09
iild615_12
Figure 9. Maximum Detector Power Dissipation
Document Number 83652
Rev. 1.3, 19-Apr-04
Figure 12. Normalization Factor for Non-saturated and Saturated
CTR vs. IF
www.vishay.com
7
ILD615/ ILQ615
VISHAY
10 5
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
ICEO - Collector-Emitter - nA
CTRNF - Normalized CTR Factor
Vishay Semiconductors
NCTRce
1.0
NCTRce(sat)
0.5
TA = 70 °C
0.0
.1
1
10
IF - LED Current - mA
10 4
10 3
10 2
Vce = 10 V
10 1
Typical
10 0
10 -1
100
10 -2
-20
0
20
40
60
80
100
TA - Ambient Temperature - °C
iild615_16
Figure 16. Collector Emitter Leakage vs. Temperature
1000
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
1.0
NCTRce
0.5
NCTRce(sat)
TA = 100 °C
0.0
.1
1
10
IF - LED Current - mA
tpLH - Propagation Low-High µs
CTRNF - Normalized CTR Factor
Figure 13. Normalization Factor for Non-saturated and Saturated
CTR vs. IF
4.0
IF = 10 mA
VCC = 5 V, Vth = 1.5 V
3.5
3.0
100
tpLH
2.5
2.0
10
tpHL
1.5
100
1
tpHL - Propagation High-Low µs
iild615_13
1.0
.1
1
10
100
RL - Load Resistor - kΩ
iild615_14
iild615_17
Figure 17. -1, Propagation Delay vs. Collector Load Resistor
1000
tpLH - Propagation Low-High µs
ICE - Collector Current - mA
35
30
25
50°C
20
15
70°C
25°C
85°C
10
5
100
2.0
tpLH
10
1.5
tpHL
1
0
0
10
iild615_15
20
30
40
50
www.vishay.com
1.0
.1
60
IF - LED Current - mA
Figure 15. Collector-Emitter Current vs. Temperature and LED
Current
8
2.5
IF = 10 mA
VCC = 5 V, Vth = 1.5 V
tpHL - Propagation High-Low µs
Figure 14. Normalization Factor for Non-saturated and Saturated
CTR vs. IF
1
10
100
RL - Collector Load Resistor - kΩ
iild615_18
Figure 18. -2, -3, Propagation Delay vs. Collector Load Resistor
Document Number 83652
Rev. 1.3, 19-Apr-04
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Figure 19. -4, Propagation Delay vs. Collector Load Resistor
2.5
IF = 10 mA
VCC = 5 V, Vth = 1.5 V
100
2.0
tpLH
10
1.5
tpHL
1
tpHL - Propagation High-Low µs
tpLH - Propagation Low-High µs
1000
1.0
.1
1
10
100
RL - Collector Load Resistor - kΩ
iild615_19
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.031 (0.79)
.300 (7.62)
typ.
.130 (3.30)
.150 (3.81)
.050 (1.27)
.018 (.46)
.022 (.56)
i178006
Document Number 83652
Rev. 1.3, 19-Apr-04
10°
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
3°–9°
.008 (.20)
.012 (.30)
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
www.vishay.com
9
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
8
7
6
5
4
3
2
1
.255 (6.48)
.265 (6.81)
9
10
11 12 13
14
15
16
ISO Method A
.779 (19.77 )
.790 (20.07)
.030 (.76)
.045 (1.14)
.300 (7.62)
typ.
.031(.79)
.130 (3.30)
.150 (3.81)
4°
.018 (.46)
.022 (.56)
.020(.51)
.035 (.89)
.100 (2.54)typ.
.050 (1.27)
10°
typ.
3°–9°
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30) .230 (5.84)
.250 (6.35)
i178007
Option 6
Option 7
.407 (10.36)
.391 (9.96)
.307 (7.8)
.291 (7.4)
.300 (7.62)
TYP.
Option 9
.375 (9.53)
.395 (10.03)
.300 (7.62)
ref.
.028 (0.7)
MIN.
.180 (4.6)
.160 (4.1) .0040 (.102)
.0098 (.249)
.315 (8.0)
MIN.
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
www.vishay.com
10
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.012 (.30) typ.
.020 (.51)
.040 (1.02)
.315 (8.00)
min.
15° max.
18450
Document Number 83652
Rev. 1.3, 19-Apr-04
ILD615/ ILQ615
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83652
Rev. 1.3, 19-Apr-04
www.vishay.com
11