CYUSB202X SD2™ USB and Mass Storage Peripheral Controller Features ■ ■ ■ ❐ ❐ Latest-generation storage support ❐ SD2.0/SDXC – UHS1 SDR50 / DDR50 Master ❐ eMMC 4.4 Master ❐ SDIO 3.0 Master Ultra low-power in core power-down mode ❐ Less than 60 µA with VBATT on and 20 µA with VBATT off I2C master controller at 1 MHz ■ Selectable input clock frequencies ■ Independent power domains for core and I/O ■ 10 × 10 mm, 0.8-mm pitch ball grid array (BGA) package Applications USB integration ❐ Certified USB 2.0 peripheral: Hi-Speed (HS), and Full-Speed (FS) only) ❐ Thirty-two physical endpoints ❐ Integrated transceiver ❐ Accessory charger adaptor (ACA) support ■ 19.2, 26, 38.4, and 52 MHz 19.2-MHz crystal input support ■ USB thumb drives ■ Card readers ■ Laptop with SD slots ■ SD slot in TV/STB ■ WIFI Dongles ■ USB SDIO Bridge TDO TCK TRST# TMS TDI Logic Block Diagram JTAG USB EPs GPIOs HS/FS Peripheral FSLC[0] FSLC[1] FSLC[2] UART CLKIN USB INTERFACE Embedded SRAm (512 kB/ 256 KB) ARM926EJ-S D+ D- SDIO/SD/MMC Controller CLKIN_32 XTALIN SPI XTALOUT • 198 Champion Court • S1_WP MMC1_RST_OUT S1_CLK S1_CMD S1_SD7 S1_SD6 S1_SD5 S1_SD3 S1_SD2 S1_SD1 S1_SD0 S0S1_INS MMC0_RST_OUT S1-PORT S0_WP S0_CLK S0_CMD S0_SD7 S0_SD6 S0_SD5 S0_SD4 S0_SD3 S0_SD2 S0_SD1 S0_SD0 I2C_SDA I2C_SCL Cypress Semiconductor Corporation Document Number: 001-87710 Rev. *A S0-PORT S1_SD4 I2 S I2C San Jose, CA 95134-1709 • 408-943-2600 Revised September 5, 2013 CYUSB202X Contents Functional Overview ........................................................ 3 USB Interface (U-Port) ................................................ 3 Mass-Storage Support (S-Port) ................................... 3 I2C Interface ................................................................ 3 UART Interface ............................................................ 3 I2S Interface ................................................................ 3 SPI Interface ................................................................ 4 Boot Options ................................................................ 4 Reset ........................................................................... 4 Clocking ....................................................................... 4 32-kHz Watchdog Timer Clock Input ........................... 4 Power .......................................................................... 5 Configuration Fuse ...................................................... 8 Digital I/Os ................................................................... 8 EMI .............................................................................. 8 System Level ESD ...................................................... 8 Pinout for BGA .................................................................. 8 Pin Description for BGA .................................................. 9 Document Number: 001-87710 Rev. *A AC Timing Parameters ................................................... 12 Storage Port Timing .................................................. 12 I2C Interface Timing .................................................. 15 Absolute Maximum Ratings .......................................... 20 Operating Conditions ..................................................... 20 DC Specifications ........................................................... 20 Reset Sequence .............................................................. 22 Package Diagram ............................................................ 23 Ordering Information ...................................................... 24 Ordering Code Definitions ......................................... 24 Acronyms ........................................................................ 25 Document Conventions ................................................. 25 Units of Measure ....................................................... 25 Document History Page ................................................. 26 Sales, Solutions, and Legal Information ...................... 27 Worldwide Sales and Design Support ....................... 27 Products .................................................................... 27 PSoC® Solutions ...................................................... 27 Cypress Developer Community ................................. 27 Technical Support ..................................................... 27 Page 2 of 27 CYUSB202X Functional Overview Mass-Storage Support (S-Port) SD2™ is a USB 2.0 High Speed mass-storage controller providing the latest SD/MMC support. SD2 complies with the SD Specification, Version 3.0, and the MMC Specification, Version 4.41. The SD2 storage interface port supports the following specifications: ■ SD Specification, Version 3.0 SD2 offers the following access paths among USB and mass storage ports: ■ Multimedia Card-System Specification, MMCA Technical Committee, Version 4.4 ■ SDIO Host controller compliant with SDIO Specification Version 3.00 ■ A USB-port (U-Port) supporting USB 2.0 peripheral Two mass-storage ports (S0-Port and S1-Port) supporting mass-storage devices. Following are the possible configurations for the two mass-storage ports: ❐ SD and MMC ❐ SD and SD ❐ MMC and MMC ❐ SD and SDIO ❐ MMC and SDIO ❐ SDIO and SDIO Combinations of these accesses can happen independently or in an interleaved manner. ■ The SD2 complies with the USB 2.0 specification. USB Interface (U-Port) SD2 offers the following features: ■ Supports USB peripheral functionality compliant with the USB 2.0 Specification ■ Supports up to 16 IN and 16 OUT endpoints. ■ Supports the USB 2.0 Streams feature. It also supports USB Attached SCSI (UAS) device class to optimize mass-storage access performance. ■ As a USB peripheral, SD2 supports UAS and Mass Storage Class (MSC) peripheral classes. ■ When the USB port is not in use, the PHY and transceiver may be disabled for power savings. Figure 1. USB Interface Signals SD3 VBUS DD+ USB Interface VBATT I2C Interface SD2 has an I2C interface compatible with the I2C Bus Specification Revision 3. Because SD2’s I2C interface is capable of operating only as I2C master, it may be used to communicate with other I2C slave devices. For example, SD2 may boot from an EEPROM connected to the I2C interface, as a selectable boot option. SD2’s I2C master controller also supports multi-master mode functionality. The power supply for the I2C interface is VIO5, which is a separate power domain from the other serial peripherals. This is to allow the I2C interface the flexibility to operate at a different voltage than the other serial interfaces. The I2C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz and 1 MHz. The I2C controller supports the clock stretching feature to enable slower devices to exercise flow control. Both SCL and SDA signals of the I2C interface require external pull-up resistors. These resistors must be connected to VIO5. UART Interface The UART interface of SD2 supports full-duplex communication. It includes the signals noted in Table 1. Table 1. UART Interface Signals Signal TX RX CTS RTS Description Output signal Input signal Flow control Flow control The UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware. If flow control is enabled, then SD2’s UART only transmits data when the CTS input is asserted. In addition to this, SD2’s UART asserts the RTS output signal, when it is ready to receive data. I2S Interface SD2 has an I2S port to support external audio codec devices. SD2 functions as I2S Master as transmitter only. The I2S interface consists of four signals: clock line (I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS), and master system clock (I2S_MCLK). SD2 can generate the system clock as an output on I2S_MCLK or accept an external system clock input on I2S_MCLK. Document Number: 001-87710 Rev. *A Page 3 of 27 CYUSB202X The sampling frequencies supported by the I2S interface are 32 kHz, 44.1 kHz, and 48 kHz. Clock inputs to SD2 must meet the phase noise and jitter requirements specified in Table 4. SPI Interface The input clock frequency is independent of the clock/data rate of SD2 core or any of the device interfaces. The internal PLL applies the appropriate clock multiply option depending on the input frequency. SD2 supports an SPI Master interface on the Serial Peripherals port. The maximum operation frequency is 33 MHz. The SPI controller supports four modes of SPI communication (see SPI Timing Specification on page 18 for details on the modes) with the Start-Stop clock. This controller is a single-master controller with a single automated SSN control. It supports transaction sizes ranging from 4 bits to 32 bits. Table 3. Crystal/Clock Frequency Selection FSLC[2] FSLC[1] FSLC[0] Crystal/Clock Frequency 0 0 0 19.2-MHz crystal Boot Options 1 0 0 19.2-MHz input CLK SD2 can load boot images from various sources, selected by the configuration of the PMODE pins. The boot options for the SD2 are as follows: 1 0 1 26-MHz input CLK 1 1 0 38.4-MHz input CLK 1 1 1 52-MHz input CLK ■ Boot from USB ■ Boot from I2C ■ Boot from eMMC on S0-Port ■ Boot from SPI Table 4. Input Clock Specifications for SD2 Table 2. Booting Options for SD2 PMODE[2:0][1] FF0 FF1 FFF 0FF 0F1 Boot From S0-Port: eMMC On failure, USB boot enabled USB Boot I2C On Failure, USB Boot is enabled I2C only SPI On Failure, USB Boot is enabled Reset A reset is initiated by asserting the Reset# pin on SD2. The specific reset sequence and timing requirements are detailed in Figure 3 on page 15 and Table 13 on page 22. All I/Os are tristated during a hard reset. Clocking SD2 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if not used. Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz. SD2 has an on-chip oscillator circuit that uses an external 19.2 MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal option/clock frequency option. The configuration options are shown in Table 3. Parameter Phase noise Description Specification Units Min Max 100-Hz offset – –75 dB 1-kHz offset – –104 dB 10-kHz offset – –120 dB 100-kHz offset – –128 dB 1-MHz offset – –130 dB Maximum frequency deviation – 150 ppm Duty cycle 30 70 % Overshoot – 3 % Undershoot – –3 % Rise time/fall time – 3 ns 32-kHz Watchdog Timer Clock Input SD2 includes a watchdog timer that can be used to interrupt the core, automatically wake up SD2 in Standby mode, and reset the core. The watchdog timer runs off a 32-kHz clock, which may optionally be supplied from an external source on a dedicated pin of SD2. The watchdog timer can be disabled by firmware. Requirements for the optional 32-kHZ clock input are listed in Table 4. Table 5. 32-kHz Clock Input Requirements Parameter Min Max Units 40 60 % Frequency deviation – ±200 ppm Rise Time/fall Time – 200 ns Duty cycle Note 1. F indicates Floating. Document Number: 001-87710 Rev. *A Page 4 of 27 CYUSB202X Power Power Modes SD2 has the following main groups of power supply domains: SD2 supports the following power modes: ■ IO_VDDQ: This refers to a group of independent supply domains for digital I/Os. The voltage level on these supplies are 1.8 V to 3.3 V. SD2 provides six independent supply domains for digital I/Os listed as follows: ❐ VIO2: S0-Port (for SD/MMC) I/O Power Supply Domain ❐ VIO3: S1-Port (for SD/MMC) I/O Power Supply Domain ❐ VIO1: S2-Port (GPIO) Power Supply Domain ❐ VIO4: S1-Port GPIO[53:57]/O Power Supply Domain (these pins support MMC’s high nibble data line - D[7:4] on S1-Port) ❐ VIO5: I2C Power Supply Domain (supports 1.2 V to 3.3 V) ❐ CVDDQ: Clock Power Supply Domain ■ VDD: This is the supply voltage for the logic core. The nominal supply voltage level is 1.2 V. This supplies the core logic circuits. The same supply must also be used for the following: ❐ AVDD: This is the 1.2-V supply for the PLL, crystal oscillator and other core analog circuits ■ VBATT/VBUS: This is the 3.2-V to 6-V battery power supply for the USB I/O and analog circuits. This supply powers the USB transceiver through SD2’s internal voltage regulator. VBATT is internally regulated to 3.3 V. ■ Normal mode: This is the full-functional operating mode. In this mode the internal CPU clock and the internal PLLs are enabled. Normal operating power consumption does not exceed the sum of ICC_CORE max and ICC_USB max (see Table 8 on page 12 for current consumption specifications). The I/O power supplies (VIO2, VIO3, VIO4, and VIO5) may be turned off when the corresponding interface is not in use. S2VDDQ cannot be turned off at any time if the S2-Port is used in the application. ■ SD2 supports four low-power modes (see Table 6 on page 5): ❐ Suspend mode with USB 2.0 PHY enabled (L1 mode) ❐ Suspend mode with USB 2.0 PHY disabled (L2 mode) ❐ Standby mode (L3 mode) ❐ Core power-down mode (L4 mode) Table 6. Entry and Exit Methods for Low-Power Modes Low Power Mode Suspend mode with USB 2.0 PHY Enabled (L1 mode) Characteristics ■ The power consumption in this mode does not exceed ISB1 ■ USB 2.0 PHY is enabled and is in U3 mode (one of the suspend modes defined by the USB 3.0 specification). This one block alone operates with its internal clock while all other clocks are shut down ■ All I/Os maintain their previous state ■ Power supply for the wakeup source and core power must be retained. All other power domains can be turned on/off individually ■ The states of the configuration registers, buffer memory and all internal RAM are maintained ■ All transactions must be completed before SD2 enters Suspend mode (state of outstanding transactions are not preserved) ■ The firmware resumes operation from where it was suspended (except when woken up by RESET# assertion) because the program counter does not reset Document Number: 001-87710 Rev. *A Methods of Entry ■ Firmware executing on the core can put SD2 into suspend mode. For example, on USB suspend condition, firmware may decide to put SD2 into suspend mode Methods of Exit ■ D+ transitioning to low or high ■ D– transitioning to low or high ■ Resume condition on SSRX +/- ■ Detection of VBUS ■ Assertion of GPIO[17] ■ Assertion of RESET# Page 5 of 27 CYUSB202X Table 6. Entry and Exit Methods for Low-Power Modes (continued) Low Power Mode Suspend mode with USB 2.0 PHY disabled (L2 mode) Characteristics ■ The power consumption in this mode does not exceed ISB2 ■ USB 2.0 PHY is disabled and the USB interface is in suspend mode ■ The clocks are shut off. The PLLs are disabled ■ All I/Os maintain their previous state ■ USB interface maintains the previous state ■ Power supply for the wakeup source and core power must be retained. All other power domains can be turned on/off individually ■ The states of the configuration registers, buffer memory, and all internal RAM are maintained ■ All transactions must be completed before SD2 enters Suspend mode (state of outstanding transactions are not preserved) ■ The firmware resumes operation from where it was suspended (except when woken up by RESET# assertion) because the program counter does not reset Document Number: 001-87710 Rev. *A Methods of Entry ■ Firmware executing on the core can put SD2 into suspend mode. For example, on USB suspend condition, firmware may decide to put SD2 into suspend mode Methods of Exit ■ D+ transitioning to low or high ■ D– transitioning to low or high ■ Resume condition on SSRX +/- ■ Detection of VBUS ■ Assertion of GPIO[17] ■ Assertion of RESET# Page 6 of 27 CYUSB202X Table 6. Entry and Exit Methods for Low-Power Modes (continued) Low Power Mode Standby Mode (L3 mode) Core Power Down Mode (L4 mode) Characteristics ■ The power consumption in this mode does not exceed ISB3 ■ All configuration register settings and program/data RAM contents are preserved. However, data in the buffers or other parts of the data path, if any, is not guaranteed. Therefore, the external processor should take care that needed data is read before putting SD2 into this Standby Mode ■ The program counter is reset after waking up from Standby ■ GPIO pins maintain their configuration ■ Crystal oscillator is turned off ■ Internal PLL is turned off ■ USB transceiver is turned off ■ Core is powered down. Upon wakeup, the core re-starts and runs the program stored in the program/data RAM ■ Power supply for the wakeup source and core power must be retained. All other power domains can be turned on/off individually ■ The power consumption in this mode does not exceed ISB4 ■ Core power is turned off ■ All buffer memory, configuration registers and the program RAM do not maintain state. It is necessary to reload the firmware on exiting from this mode ■ In this mode, all other power domains can be turned on/off individually Document Number: 001-87710 Rev. *A Methods of Entry ■ ■ Firmware executing on the core or external processor configures the appropriate register Turn off VDD Methods of Exit ■ Detection of VBUS ■ Assertion of GPIO[17] ■ Assertion of RESET# ■ Reapply VDD ■ Assertion of RESET# Page 7 of 27 CYUSB202X Configuration Fuse EMI Fuse options are available for specific usage models. Contact Cypress Applications/Marketing for details. SD2 meets EMI requirements outlined by FCC 15B (USA) and EN55022 (Europe) for consumer electronics. SD2 can tolerate reasonable EMI, conducted by aggressor, outlined by these specifications and continue to function as expected. Digital I/Os SD2 provides firmware controlled pull-up or pull-down resistors internally on all digital I/O pins. The pins can be pulled high through an internal 50-k resistor or can be pulled low through an internal 10-k resistor to prevent the pins from floating. The I/O pins may have the following states: ■ Tristated (High-Z) ■ Weak pull-up (through internal 50 k) ■ Pull down (through internal 10 k) ■ Hold (I/O hold its value) when in low power modes All unused I/Os should be pulled high by using the internal pull-up resistors. All unused outputs should be left floating. All I/Os can be driven at full-strength, three-quarter strength, half-strength, or quarter-strength. These drive strengths are configured based on each interface. System Level ESD SD2 has built-in ESD protection on the D+, D–, GND pins on the USB interface. The ESD protection levels provided on these ports are: ■ ±2.2-KV human body model (HBM) based on JESD22-A114 Specification ■ ±6-KV contact discharge and ±8-KV air gap discharge based on IEC61000-4-2 level 3A ■ ±8-KV contact discharge and ±15-KV air gap discharge based on IEC61000-4-2 level 4C. This protection ensures the device continues to function after ESD events up to the levels stated. The S0/S1_INS have up to ±2.2 KV HBM internal ESD protection. Pinout for BGA Figure 2. SD2 BGA Ball Map (Top View) A 1 2 3 4 5 6 7 8 9 10 11 U3VSSQ U3RXVDDQ SSRXM SSRXP SSTXP SSTXM AVDD VSS DP DM NC B VIO4 FSLC[0] R_USB3 FSLC[1] U3TXVDDQ CVDDQ A V SS V SS VSS V DD NC C GPIO[54] GPIO[55] VDD GPIO[57] RESET# XTALIN XTALOUT R_USB2 OTG_ID NC VIO5 D GPIO[50] GPIO[51] GPIO[52] GPIO[53] GPIO[56] CLKIN_32 CLKIN VSS I2C_GPIO[58] I2C_GPIO[59] O[60] E GPIO[47] VSS S1VDDQ GPIO[49] GPIO[48] FSLC[2] NC NC VDD V BATT V BUS VDD F S0VDDQ GPIO[45] GPIO[44] GPIO[41] GPIO[46] NC GPIO[2] GPIO[5] GPIO[1] GPIO[0] G VSS GPIO[42] GPIO[43] GPIO[30] GPIO[25] GPIO[22] GPIO[21] GPIO[15] GPIO[4] GPIO[3] VSS H VDD GPIO[39] GPIO[40] GPIO[31] GPIO[29] GPIO[26] GPIO[20] GPIO[24] GPIO[7] GPIO[6] S2VDDQ J GPIO[38] GPIO[36] GPIO[37] GPIO[34] GPIO[28] GPIO[16] GPIO[19] GPIO[14] GPIO[9] GPIO[8] VDD K GPIO[35] GPIO[33] VSS VSS GPIO[27] GPIO[23] GPIO[18] GPIO[17] GPIO[13] GPIO[12] GPIO[10] L VSS VSS VSS GPIO[32] VDD VSS VDD NC S2VDDQ GPIO[11] VSS Document Number: 001-87710 Rev. *A Page 8 of 27 CYUSB202X Pin Description for BGA Table 7. Pin List Pin No. Power Domain I/O Name F10 VI01 I/O GPIO[0] GPIO F9 VI01 I/O GPIO[1] GPIO F7 VI01 I/O GPIO[2] GPIO Description S2-PORT (GPIO) G10 VI01 I/O GPIO[3] GPIO G9 VI01 I/O GPIO[4] GPIO F8 VI01 I/O GPIO[5] GPIO H10 VI01 I/O GPIO[6] GPIO H9 VI01 I/O GPIO[7] GPIO J10 VI01 I/O GPIO[8] GPIO J9 VI01 I/O GPIO[9] GPIO K11 VI01 I/O GPIO[10] GPIO L10 VI01 I/O GPIO[11] GPIO K10 VI01 I/O GPIO[12] GPIO K9 VI01 I/O GPIO[13] GPIO J8 VI01 I/O GPIO[14] GPIO GPIO G8 VI01 I/O GPIO[15] J6 VI01 I/O GPIO[16] GPIO K8 VI01 I/O GPIO[17] GPIO K7 VI01 I/O GPIO[18] GPIO J7 VI01 I/O GPIO[19] GPIO H7 VI01 I/O GPIO[20] GPIO G7 VI01 I/O GPIO[21] GPIO G6 VI01 I/O GPIO[22] GPIO GPIO K6 VI01 I/O GPIO[23] H8 VI01 I/O GPIO[24] GPIO G5 VI01 I/O GPIO[25] GPIO H6 VI01 I/O GPIO[26] GPIO GPIO K5 VI01 I/O GPIO[27] J5 VI01 I/O GPIO[28] GPIO H5 VI01 I/O GPIO[29] GPIO G4 VI01 I/O GPIO[30] PMODE[0] H4 VI01 I/O GPIO[31] PMODE[1] L4 VI01 I/O GPIO[32] PMODE[2] NC No Connect CVDDQ I RESET# Active Low. Hardware Reset. L8 C5 8b MMC Configuration SD+GPIO Configuration GPIO Configuration GPIO K2 VI02 I/O GPIO[33] S0_SD0 S0_SD0 J4 VI02 I/O GPIO[34] S0_SD1 S0_SD1 GPIO K1 VI02 I/O GPIO[35] S0_SD2 S0_SD2 GPIO J2 VI02 I/O GPIO[36] S0_SD3 S0_SD3 GPIO J3 VI02 I/O GPIO[37] S0_SD4 GPIO GPIO J1 VI02 I/O GPIO[38] S0_SD5 GPIO GPIO Document Number: 001-87710 Rev. *A Page 9 of 27 CYUSB202X Table 7. Pin List (continued) Pin No. Power Domain I/O Name H2 VI02 I/O GPIO[39] H3 VI02 I/O GPIO[40] F4 VI02 I/O GPIO[41] G2 VI02 I/O GPIO[42] G3 VI02 I/O GPIO[43] Description S0_SD6 GPIO GPIO S0_SD7 GPIO GPIO S0_CMD S0_CMD GPIO S0_CLK S0_CLK GPIO S0_WP S0_WP GPIO F3 VI02 I/O GPIO[44] S0S1_INS S0S1_INS GPIO F2 VI02 I/O GPIO[45] MMC0_RST_OUT GPIO GPIO 8b MMC SD+UART SD+SPI SD+GPIO GPIO GPIO+ UART+I2S SD+I2S UART+SPI+ I2S F5 VI03 I/O GPIO[46] S1_SD0 S1_SD0 S1_SD0 S1_SD0 GPIO GPIO S1_SD0 UART_RTS E1 VI03 I/O GPIO[47] S1_SD1 S1_SD1 S1_SD1 S1_SD1 GPIO GPIO S1_SD1 UART_CTS E5 VI03 I/O GPIO[48] S1_SD2 S1_SD2 S1_SD2 S1_SD2 GPIO GPIO S1_SD2 UART_TX E4 VI03 I/O GPIO[49] S1_SD3 S1_SD3 S1_SD3 S1_SD3 GPIO GPIO S1_SD3 UART_RX D1 VI03 I/O GPIO[50] S1_CMD S1_CMD S1_CMD S1_CMD GPIO I2S_CLK S1_CMD I2S_CLK D2 VI03 I/O GPIO[51] S1_CLK S1_CLK S1_CLK S1_CLK GPIO I2S_SD S1_CLK I2S_SD D3 VI03 I/O GPIO[52] S1_WP S1_WP S1_WP S1_WP I2S_WS S1_WP I2S_WS D4 VIO4 I/O GPIO[53] S1_SD4 UART_RTS SPI_SCK GPIO GPIO UART_RTS GPIO SPI_SCK C1 VIO4 I/O GPIO[54] S1_SD5 UART_CTS SPI_SSN GPIO GPIO UART_CTS I2S_CLK SPI_SSN C2 VIO4 I/O GPIO[55] S1_SD6 UART_TX SPI_MISO GPIO GPIO UART_TX I2S_SD SPI_MISO D5 VIO4 I/O GPIO[56] S1_SD7 UART_RX SPI_MOSI GPIO GPIO UART_RX I2S_WS SPI_MOSI C4 VIO4 I/O GPIO[57] MMC1_RST_OUT GPIO GPIO GPIO GPIO I2S_MCLK I2S_MCLK I2S_MCLK C9 GPIO NC No Connect A3 NC USB 3.0 SuperSpeed Receive Minus A4 NC USB 3.0 SuperSpeed Receive Plus A6 NC USB 3.0 SuperSpeed Transmit Minus A5 NC USB 3.0 SuperSpeed Transmit Plus A9 VBATT/ VBUS I/O D+ USB (HS/FS) Data Plus A10 VBATT/ VBUS I/O D- USB (HS/FS) Data Minus NC No Connect FSLC[0] A11 B2 CVDDQ I FSLC[0] C6 AVDD I/O XTALIN XTALIN C7 AVDD I/O XTALOUT XTALOUT B4 CVDDQ I FSLC[1] FSLC[1] FSLC[2] E6 CVDDQ I FSLC[2] D7 CVDDQ I CLKIN CLKIN D6 CVDDQ I CLKIN_32 CLKIN_32 D9 VIO5 I/O I2C_GPIO[58] SCL (Serial Clock) for I2C Bus Interface D10 VIO5 I/O 2 I C_GPIO[59] SDA (Serial Data) for I2C Bus Interface No Connect E7 NC C10 NC No Connect B11 NC No Connect E8 NC No Connect F6 NC No Connect O[60] Output only D11 VIO5 O Document Number: 001-87710 Rev. *A Page 10 of 27 CYUSB202X Table 7. Pin List (continued) Pin No. Power Domain I/O Name PWR VBATT B10 PWR VDD A1 PWR VSS E11 PWR VBUS D8 PWR VSS H11 PWR VIO1 E2 PWR VSS L9 PWR VIO1 G1 PWR VSS VIO2 E10 F1 PWR G11 PWR VSS E3 PWR VIO3 L1 PWR VSS B1 PWR VIO4 L6 PWR VSS B6 PWR CVDDQ B5 Description NC A2 NC C11 PWR VIO5 L11 PWR VSS A7 PWR AVDD B7 PWR AVSS C3 PWR VDD B8 PWR VSS E9 PWR VDD B9 PWR VSS F11 PWR VDD H1 PWR VDD L7 PWR VDD J11 PWR VDD L5 PWR VDD K4 PWR VSS L3 PWR VSS K3 PWR VSS L2 PWR VSS A8 PWR VSS Precision Resistors C8 B3 VBUS/ VBATT I/O R_usb2 Precision resistor for USB 2.0 (Connect a 6.04 k+/-1% resistor between this pin and GND) NC Precision resistor for USB 3.0 (Connect a 200 +/-1% resistor between this pin and GND) Document Number: 001-87710 Rev. *A Page 11 of 27 CYUSB202X AC Timing Parameters Storage Port Timing The S0-Port and S1-Port support the MMC Specification Version 4.4 and SD Specification Version 2.0. Table 7 lists the timing parameters for S0-Port and S1-Port of SD2. Table 8. S-Port Timing Parameters[2] Parameter Description Min Max Units MMC-20 tSDIS CMD Host input setup time for CMD 4.8 – ns tSDIS DAT Host input setup time for DAT 4.8 – ns tSDIH CMD Host input hold time for CMD 4.4 – ns tSDIH DAT Host input hold time for DAT 4.4 – ns tSDOS CMD Host output setup time for CMD 5 – ns tSDOS DAT Host output setup time for DAT 5 – ns tSDOH CMD Host output hold time for CMD 5 – ns tSDOH DAT Host output hold time for DAT 5 – ns tSCLKR Clock rise time – 2 ns tSCLKF Clock fall time – 2 ns tSDCK Clock cycle time 50 – ns SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD 20 MHz 40 60 % Host input setup time for CMD 10 – ns tSDIS DAT Host input setup time for DAT 10 – ns tSDIH CMD Host input hold time for CMD 9 – ns tSDIH DAT Host input hold time for DAT 9 – ns tSDOS CMD Host output setup time for CMD 3 – ns MMC-26 tSDOS DAT Host output setup time for DAT 3 – ns tSDOH CMD Host output hold time for CMD 3 – ns tSDOH DAT Host output hold time for DAT 3 – ns tSCLKR Clock rise time – 2 ns tSCLKF Clock fall time tSDCK Clock cycle time SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD – 2 ns 38.5 – ns 26 MHz 40 60 % Host input setup time for CMD 4 – ns tSDIS DAT Host input setup time for DAT 4 – ns tSDIH CMD Host input hold time for CMD 3 – ns tSDIH DAT Host input hold time for DAT 3 – ns tSDOS CMD Host output setup time for CMD 3 – ns MC-HS tSDOS DAT Host output setup time for DAT 3 – ns tSDOH CMD Host output hold time for CMD 3 – ns tSDOH DAT Host output hold time for DAT 3 – ns Document Number: 001-87710 Rev. *A Page 12 of 27 CYUSB202X Table 8. S-Port Timing Parameters[2] (continued) Parameter tSCLKR Description Clock rise time tSCLKF Clock fall time tSDCK Clock cycle time SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD Host input setup time for CMD tSDIS DAT tSDIH CMD Min Max Units – 2 ns – 2 ns 19.2 – ns – 52 MHz 40 60 % 4 – ns Host input setup time for DAT 0.56 – ns Host input hold time for CMD 3 – ns tSDIH DAT Host input hold time for DAT 2.58 – ns tSDOS CMD Host output setup time for CMD 3 – ns tSDOS DAT Host output setup time for DAT 2.5 – ns tSDOH CMD Host output hold time for CMD 3 – ns tSDOH DAT Host output hold time for DAT 2.5 – ns tSCLKR Clock rise time – 2 ns MMC-DDR52 tSCLKF Clock fall time tSDCK Clock cycle time SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD Host input setup time for CMD tSDIS DAT tSDIH CMD – 2 ns 19.2 – ns 52 MHz 45 55 % 24 – ns Host input setup time for DAT 24 – ns Host input hold time for CMD 2.5 – ns tSDIH DAT Host input hold time for DAT 2.5 – ns tSDOS CMD Host output setup time for CMD 5 – ns SD-Default Speed (SDR12) tSDOS DAT Host output setup time for DAT 5 – ns tSDOH CMD Host output hold time for CMD 5 – ns tSDOH DAT Host output hold time for DAT 5 – ns tSCLKR Clock rise time – 2 ns tSCLKF Clock fall time – 2 ns tSDCK Clock cycle time 40 – ns SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD Host input setup time for CMD tSDIS DAT tSDIH CMD 25 MHz 40 60 % 4 – ns Host input setup time for DAT 4 – ns Host input hold time for CMD 2.5 – ns tSDIH DAT Host input hold time for DAT 2.5 – ns tSDOS CMD Host output setup time for CMD 6 – ns SD-High-Speed(SDR25) tSDOS DAT Host output setup time for DAT 6 – ns tSDOH CMD Host output hold time for CMD 2 – ns tSDOH DAT Host output hold time for DAT 2 – ns Document Number: 001-87710 Rev. *A Page 13 of 27 CYUSB202X Table 8. S-Port Timing Parameters[2] (continued) Parameter tSCLKR Description Clock rise time Min Max Units – 2 ns tSCLKF Clock fall time – 2 ns tSDCK Clock cycle time 20 – ns SDFREQ Clock frequency – 50 MHz tSDCLKOD Clock duty cycle 40 60 % tSDIS CMD Host input setup time for CMD 1.5 – ns tSDIS DAT Host input setup time for DAT 1.5 – ns tSDIH CMD Host input hold time for CMD 2.5 – ns tSDIH DAT Host input hold time for DAT 2.5 – ns tSDOS CMD Host output setup time for CMD 3 – ns SD-SDR50 tSDOS DAT Host output setup time for DAT 3 – ns tSDOH CMD Host output hold time for CMD 0.8 – ns tSDOH DAT Host output hold time for DAT 0.8 – ns tSCLKR Clock rise time – 2 ns tSCLKF Clock fall time – 2 ns tSDCK Clock cycle time 10 – ns SDFREQ Clock frequency tSDCLKOD Clock duty cycle tSDIS CMD 100 MHz 40 60 % Host input setup time for CMD 4 – ns tSDIS DAT Host input setup time for DAT 0.92 – ns tSDIH CMD Host input hold time for CMD 2.5 – ns tSDIH DAT Host input hold time for DAT 2.5 – ns tSDOS CMD Host output setup time for CMD 6 – ns SD-DDR50 tSDOS DAT Host output setup time for DAT 3 – ns tSDOH CMD Host output hold time for CMD 0.8 – ns tSDOH DAT Host output hold time for DAT 0.8 – ns tSCLKR Clock rise time – 2 ns tSCLKF Clock fall time – 2 ns tSDCK Clock cycle time 20 – ns SDFREQ Clock frequency 50 MHz tSDCLKOD Clock duty cycle 55 % 45 Note 2. All parameters guaranteed by design and validated through characterization. Document Number: 001-87710 Rev. *A Page 14 of 27 CYUSB202X I2C Interface Timing I2C Timing Figure 3. I2C Timing Definition Table 9. I2C Timing Parameters[3] Parameter fSCL tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tr tf tSU:STO tBUF tVD:DAT tVD:ACK tSP Description I2C Standard Mode Parameters SCL clock frequency Hold time START condition LOW period of the SCL HIGH period of the SCL Setup time for a repeated START condition Data hold time Data setup time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Setup time for STOP condition Bus free time between a STOP and START condition Data valid time Data valid ACK Pulse width of spikes that must be suppressed by input filter Min Max Units 0 4 4.7 4 4.7 0 250 – – 4 4.7 – – n/a 100 – – – – – – 1000 300 – – 3.45 3.45 n/a kHz µs µs µs µs µs ns ns ns µs µs µs µs Note 3. All parameters guaranteed by design and validated through characterization. Document Number: 001-87710 Rev. *A Page 15 of 27 CYUSB202X Table 9. I2C Timing Parameters[3] (continued) Parameter fSCL tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tr tf tSU:STO tBUF tVD:DAT tVD:ACK tSP fSCL tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tr tf tSU:STO tBUF tVD:DAT tVD:ACK tSP Description I2C Fast Mode Parameters Min Max Units SCL clock frequency 0 Hold time START condition 0.6 LOW period of the SCL 1.3 HIGH period of the SCL 0.6 Setup time for a repeated START condition 0.6 Data hold time 0 Data setup time 100 Rise time of both SDA and SCL signals – Fall time of both SDA and SCL signals – Setup time for STOP condition 0.6 Bus-free time between a STOP and START condition 1.3 Data valid time – Data valid ACK – Pulse width of spikes that must be suppressed by input filter 0 I2C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2V) SCL clock frequency 0 Hold time START condition 0.26 LOW period of the SCL 0.5 HIGH period of the SCL 0.26 Setup time for a repeated START condition 0.26 Data hold time 0 Data setup time 50 Rise time of both SDA and SCL signals – Fall time of both SDA and SCL signals – Setup time for STOP condition 0.26 Bus free time between a STOP and START condition 0.5 Data valid time – Data valid ACK – Pulse width of spikes that must be suppressed by input filter 0 400 – – – – – – 300 300 – – 0.9 0.9 50 kHz µs µs µs µs µs ns ns ns µs µs µs µs ns 1000 – – – – – – 120 120 – – 0.45 0.55 50 kHz µs µs µs µs µs µs ns ns µs µs µs µs ns Document Number: 001-87710 Rev. *A Page 16 of 27 CYUSB202X I2S Timing Diagram Figure 4. I2S Transmit Cycle tT tTR tTF tTL tTH SCK tThd SA, WS (output) tTd Table 10. I2S Timing Parameters[4] Parameter tT Description I2S 2S transmitter clock cycle Min Max Units Ttr – ns tTL I transmitter cycle LOW period 0.35 Ttr – ns tTH I2S transmitter cycle HIGH period 0.35 Ttr – ns tTR I2S transmitter rise time – 0.15 Ttr ns 0.15 Ttr ns I 2S transmitter fall time – tThd I 2S transmitter data hold time 0 – ns tTd I2S transmitter delay time – 0.8tT ns tTF Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz). Note 4. All parameters guaranteed by design and validated through characterization. Document Number: 001-87710 Rev. *A Page 17 of 27 CYUSB202X SPI Timing Specification Figure 5. SPI Timing SSN (output) tlead SCK (CPOL=0, Output) tsdi MISO (input) twsck thoi MSB LSB td tsdd tdis tdi v MOSI (output) tlag trf twsck SCK (CPOL=1, Output) tssnh tsck LSB MSB SPI Master Timing for CPHA = 0 SSN (output) SCK (CPOL=0, Output) tssnh tsck tlead twsck trf tlag twsck SCK (CPOL=1, Output) tsdi MISO (input) thoi LSB tdis tdi tdv MOSI (output) MSB LSB MSB SPI Master Timing for CPHA = 1 Document Number: 001-87710 Rev. *A Page 18 of 27 CYUSB202X Table 11. SPI Timing Parameters[5] Min Max Units fop Parameter Operating frequency Description 0 33 MHz tsck Cycle time 30 – ns twsck Clock high/low time 13.5 – [6] 1.5 tsck + 5 ns 0.5 1.5 tsck[6]+5 ns Rise/fall time – 8 ns tsdd Output SSN to valid data delay time – 5 ns tdv Output data valid time – 5 ns tdi Output data invalid 0 – ns tssnh Minimum SSN high time 10 – ns tsdi Data setup time input 8 – ns thoi Data hold time input 0 – ns tdis Disable data output on SSN high 0 – ns tlead SSN-SCK lead time tlag Enable lag time trf 1/2 tsck -5 ns [6] Notes 5. All parameters guaranteed by design and validated through characterization. 6. Depends on LAG and LEAD setting in the SPI_CONFIG register. Document Number: 001-87710 Rev. *A Page 19 of 27 CYUSB202X Absolute Maximum Ratings ■ Exceeding maximum ratings may shorten the useful life of the device. Latch-up current ........................................................ > 200 mA Storage temperature .................................... –65 °C to +150 °C ±6-KV contact discharge, ±8-KV air gap discharge based on IEC61000-4-2 level 3A, ±8-KV contact discharge, and ±15-KV air gap discharge based on IEC61000-4-2 level 4C Maximum output short circuit current for all I/O configurations. (Vout = 0 V) ........................ –100 mA Ambient temperature with power supplied (Industrial) ............................ –40 °C to +85 °C Operating Conditions Supply voltage to ground potential VDD, AVDDQ ..................................................................... 1.25 V TA (ambient temperature under bias) Industrial ........................................................ –40 °C to +85 °C S2VDDQ,S1VDDQ, S0VDDQ, VIO4, VIO5 .............................. 3.6 V U3TXVDDQ, U3RXVDDQ .................................................. 1.25 V VDD, AVDDQ, U3TXVDDQ, U3RXVDDQ supply voltage .................................................. 1.15 V to 1.25 V DC input voltage to any input pin .............................. VCC + 0.3 VBATT supply voltage .............................................. 3.2 V to 6 V DC voltage applied to outputs in High Z State ............................................. VCC + 0.3 S2VDDQ, S1VDDQ, S0VDDQ, VIO4, CVDDQ supply voltage ...................................................... 1.7 V to 3.6 V (VCC is the corresponding I/O voltage) VIO5 supply voltage ............................................ 1.15 V to 3.6 V Static discharge voltage ESD protection levels: ■ ±2.2-KV human body model (HBM) based on JESD22-A114 ■ Additional ESD Protection levels on D+, D–, VBUS, GND pins U-port and GPIO pins LPP-Port DC Specifications Table 12. DC Specifications Parameter VDD AVDD VIO2 VIO3 VIO1 VIO4 VBATT VBUS CVDDQ VIO5 Description Core voltage supply Analog voltage supply SD/ MMC/ CF I/O power supply domain SD/MMC I/O power supply domain GPIO/ CF I/O power supply domain GPIO/ I/O power supply domain USB voltage supply USB voltage supply Clock voltage supply I2C voltage supply Min 1.15 1.15 1.7 1.7 1.7 1.7 3.2 4.0 1.7 1.2 Max 1.25 1.25 3.6 3.6 3.6 3.6 6 6 3.6 3.3 Units V V V V V V V V V V VIH1 Input HIGH voltage 1 0.625 × VCC VCC + 0.3 V VIH2 Input HIGH voltage 2 VCC - 0.4 VCC + 0.3 V VIL Input LOW voltage –0.3 0.25 × VCC V VCC is the corresponding I/O voltage supply. VOH Output HIGH voltage 0.9 × VCC – V IOH (max) = –100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply. VOL Output LOW voltage – 0.1 × VCC V IOL (min) = +100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply. Document Number: 001-87710 Rev. *A Notes 1.2-V typical 1.2-V typical 1.8-, 2.5-, and 3.3-V typical 1.8-, 2.5-, and 3.3-V typical 1.8-, 2.5-, and 3.3-V typical 1.8-, 2.5-, and 3.3-V typical 3.7-V typical 5-V typical 1.8-, 3.3-V typical 1.2-,1.8-, 2.5-, and 3.3-V typical For 2.0 V VCC 3.6 V (except USB port).VCC is the corresponding I/O voltage supply. For 1.7 V VCC 2.0 V (except USB port). VCC is the corresponding I/O voltage supply. Page 20 of 27 CYUSB202X Table 12. DC Specifications (continued) IIX Parameter Description Input leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM Min –1 Max 1 Units µA IOZ Output High-Z leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM –1 1 µA ICC Core Core and Analog Voltage Operating Current – 150 mA ICC USB USB voltage supply operating current Total suspend current during Suspend Mode with USB 3.0 PHY enabled (L1 mode) – – 20 – mA mA ISB2 Total suspend current during Suspend Mode with USB 3.0 PHYdisabled (L2 mode) – – mA Core current: 250 uA I/O current: 20 uA USB current: 1.2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 C.) ISB3 Total Standby Current during Standby Mode (L3 mode) – – µA Core current: 60 uA I/O current: 20 uA USB current: 40 uA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 C.) ISB4 Total Standby Current during Core Power Down Mode (L4 mode) – – µA Core current: 0 uA I/O current: 20 uA USB current: 40 uA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 C.) VRAMP Voltage Ramp Rate on Core and I/O Supplies Noise Level Permitted on VDD and I/O Supplies 0.2 50 V/ms – 100 mV Voltage ramp must be monotonic Max p-p noise level permitted on all supplies except AVDD Noise Level Permitted on AVDD Supply – 20 mV ISB1 VN VN_AVDD Document Number: 001-87710 Rev. *A Notes All I/O signals held at VDDQ (For I/Os that have a pull-up/down resistor connected, the leakage current increases by VDDQ/Rpu or VDDQ/RPD All I/O signals held at VDDQ Total current through AVDD, VDD Core current: 1.5 mA I/O current: 20 uA USB current: 2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 C.) Max p-p noise level permitted on AVDD Page 21 of 27 CYUSB202X Reset Sequence The hard reset sequence requirements for SD2 are specified in the following table. Table 13. Reset and Standby Timing Parameters Parameter tRPW Definition Minimum RESET# pulse width tRH Minimum high on RESET# tRR Reset Recovery Time (after which Boot loader begins firmware download) tSBY Time to enter Standby/Suspend (from the time MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set) tWU Time to wakeup from standby tWH Minimum time before Standby/Suspend source may be reasserted Conditions Min (ms) Max (ms) Clock Input 1 – Crystal Input 1 – 5 – Clock Input 1 – Crystal Input 5 – 1 Clock Input 1 – Crystal Input 5 – 5 – Figure 6. Reset Sequence VDD ( core ) xVDDQ XTALIN/ CLKIN XTALIN/ CLKIN must be stable before exiting Standby/Suspend Mandatory Reset Pulse tRh tRR Hard Reset RESET # tWH tRPW Standby/ Suspend Source tSBY Standby/Suspend source Is asserted (MAIN_POWER_EN/ MAIN_CLK_EN bit is set) Document Number: 001-87710 Rev. *A tWU Standby/Suspend source Is deasserted Page 22 of 27 CYUSB202X Package Diagram Figure 7. 121-ball FBGA (10 × 10 × 1.20 mm) Package Outline, 001-54471 001-54471 *D Document Number: 001-87710 Rev. *A Page 23 of 27 CYUSB202X Ordering Information Table 14. Ordering Information Ordering Code SD/eMMC SDIO Ports SRAM (KB) Package Type CYUSB2024-BZXI 2 512 121-ball BGA CYUSB2025-BZXI 2 512 121-ball BGA Ordering Code Definitions CY USB 2 XXX - BZ X I X X = blank or T blank = Tube; T = Tape and Reel Temperature Range: I = Industrial Pb-free Package Type: BZ = 121-ball BGA Marketing Part Number Base Part Number for USB 2.0 Marketing Code: USB = USB Controller Company ID: CY = Cypress Document Number: 001-87710 Rev. *A Page 24 of 27 CYUSB202X Acronyms Document Conventions Acronym Description Units of Measure ACA accessory charger adaptor BGA ball grid array °C degree Celsius MMC multimedia card µA microamperes PLL phase locked loop µs microseconds SD secure digital mA milliamperes SDIO secure digital input / output Mbps Megabytes per second SLC single-level cell MHz mega hertz USB universal serial bus ms milliseconds Document Number: 001-87710 Rev. *A Symbol Unit of Measure ns nanoseconds ohms pF pico Farad V volts Page 25 of 27 CYUSB202X Document History Page Document Title: CYUSB202X, SD2™ USB and Mass Storage Peripheral Controller Document Number: 001-87710 Orig. of Change Submission Date 4016299 GSZ 05/31/2013 New data sheet. 4114923 GSZ 09/05/2013 Changed status from “Company Confidential” to “Final”. Revision ECN ** *A Description of Change Updated in new template. Document Number: 001-87710 Rev. *A Page 26 of 27 CYUSB202X Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive Clocks & Buffers Interface Lighting & Power Control cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc Memory PSoC Touch Sensing cypress.com/go/memory cypress.com/go/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/go/support cypress.com/go/touch USB Controllers Wireless/RF psoc.cypress.com/solutions cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-87710 Rev. *A Revised September 5, 2013 Page 27 of 27 SD3™ is the trademark of Cypress Semiconductor Corporation. All other products and company names mentioned in this document may be the trademarks of their respective holders.