CYUSB202X SD2™ USB and Mass Storage Peripheral Controller Datasheet.pdf

CYUSB202X
SD2™ USB and Mass Storage Peripheral Controller
Features
■
■
■
❐
❐
Latest-generation storage support
❐ SD2.0/SDXC – UHS1 SDR50 / DDR50 Master
❐ eMMC 4.4 Master
❐ SDIO 3.0 Master
Ultra low-power in core power-down mode
❐ Less than 60 µA with VBATT on and 20 µA with VBATT off
I2C master controller at 1 MHz
■
Selectable input clock frequencies
■
Independent power domains for core and I/O
■
10 × 10 mm, 0.8-mm pitch ball grid array (BGA) package
Applications
USB integration
❐ Certified USB 2.0 peripheral: Hi-Speed (HS), and Full-Speed
(FS) only)
❐ Thirty-two physical endpoints
❐ Integrated transceiver
❐ Accessory charger adaptor (ACA) support
■
19.2, 26, 38.4, and 52 MHz
19.2-MHz crystal input support
■
USB thumb drives
■
Card readers
■
Laptop with SD slots
■
SD slot in TV/STB
■
WIFI Dongles
■
USB SDIO Bridge
TDO
TCK
TRST#
TMS
TDI
Logic Block Diagram
JTAG
USB
EPs
GPIOs
HS/FS
Peripheral
FSLC[0]
FSLC[1]
FSLC[2]
UART
CLKIN
USB INTERFACE
Embedded
SRAm
(512 kB/
256 KB)
ARM926EJ-S
D+
D-
SDIO/SD/MMC Controller
CLKIN_32
XTALIN
SPI
XTALOUT
•
198 Champion Court
•
S1_WP
MMC1_RST_OUT
S1_CLK
S1_CMD
S1_SD7
S1_SD6
S1_SD5
S1_SD3
S1_SD2
S1_SD1
S1_SD0
S0S1_INS
MMC0_RST_OUT
S1-PORT
S0_WP
S0_CLK
S0_CMD
S0_SD7
S0_SD6
S0_SD5
S0_SD4
S0_SD3
S0_SD2
S0_SD1
S0_SD0
I2C_SDA
I2C_SCL
Cypress Semiconductor Corporation
Document Number: 001-87710 Rev. *A
S0-PORT
S1_SD4
I2 S
I2C
San Jose, CA 95134-1709
•
408-943-2600
Revised September 5, 2013
CYUSB202X
Contents
Functional Overview ........................................................ 3
USB Interface (U-Port) ................................................ 3
Mass-Storage Support (S-Port) ................................... 3
I2C Interface ................................................................ 3
UART Interface ............................................................ 3
I2S Interface ................................................................ 3
SPI Interface ................................................................ 4
Boot Options ................................................................ 4
Reset ........................................................................... 4
Clocking ....................................................................... 4
32-kHz Watchdog Timer Clock Input ........................... 4
Power .......................................................................... 5
Configuration Fuse ...................................................... 8
Digital I/Os ................................................................... 8
EMI .............................................................................. 8
System Level ESD ...................................................... 8
Pinout for BGA .................................................................. 8
Pin Description for BGA .................................................. 9
Document Number: 001-87710 Rev. *A
AC Timing Parameters ................................................... 12
Storage Port Timing .................................................. 12
I2C Interface Timing .................................................. 15
Absolute Maximum Ratings .......................................... 20
Operating Conditions ..................................................... 20
DC Specifications ........................................................... 20
Reset Sequence .............................................................. 22
Package Diagram ............................................................ 23
Ordering Information ...................................................... 24
Ordering Code Definitions ......................................... 24
Acronyms ........................................................................ 25
Document Conventions ................................................. 25
Units of Measure ....................................................... 25
Document History Page ................................................. 26
Sales, Solutions, and Legal Information ...................... 27
Worldwide Sales and Design Support ....................... 27
Products .................................................................... 27
PSoC® Solutions ...................................................... 27
Cypress Developer Community ................................. 27
Technical Support ..................................................... 27
Page 2 of 27
CYUSB202X
Functional Overview
Mass-Storage Support (S-Port)
SD2™ is a USB 2.0 High Speed mass-storage controller
providing the latest SD/MMC support. SD2 complies with the SD
Specification, Version 3.0, and the MMC Specification, Version
4.41.
The SD2 storage interface port supports the following
specifications:
■
SD Specification, Version 3.0
SD2 offers the following access paths among USB and mass
storage ports:
■
Multimedia Card-System Specification, MMCA Technical
Committee, Version 4.4
■
SDIO Host controller compliant with SDIO Specification
Version 3.00
■
A USB-port (U-Port) supporting USB 2.0 peripheral
Two mass-storage ports (S0-Port and S1-Port) supporting
mass-storage devices. Following are the possible configurations for the two mass-storage ports:
❐ SD and MMC
❐ SD and SD
❐ MMC and MMC
❐ SD and SDIO
❐ MMC and SDIO
❐ SDIO and SDIO
Combinations of these accesses can happen independently or
in an interleaved manner.
■
The SD2 complies with the USB 2.0 specification.
USB Interface (U-Port)
SD2 offers the following features:
■
Supports USB peripheral functionality compliant with the USB
2.0 Specification
■
Supports up to 16 IN and 16 OUT endpoints.
■
Supports the USB 2.0 Streams feature. It also supports USB
Attached SCSI (UAS) device class to optimize mass-storage
access performance.
■
As a USB peripheral, SD2 supports UAS and Mass Storage
Class (MSC) peripheral classes.
■
When the USB port is not in use, the PHY and transceiver may
be disabled for power savings.
Figure 1. USB Interface Signals
SD3
VBUS
DD+
USB Interface
VBATT
I2C Interface
SD2 has an I2C interface compatible with the I2C Bus
Specification Revision 3. Because SD2’s I2C interface is capable
of operating only as I2C master, it may be used to communicate
with other I2C slave devices. For example, SD2 may boot from
an EEPROM connected to the I2C interface, as a selectable boot
option.
SD2’s I2C master controller also supports multi-master mode
functionality.
The power supply for the I2C interface is VIO5, which is a
separate power domain from the other serial peripherals. This is
to allow the I2C interface the flexibility to operate at a different
voltage than the other serial interfaces.
The I2C controller supports bus frequencies of 100 kHz,
400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum
operating frequency supported is 100 kHz. When VIO5 is 1.8 V,
2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz
and 1 MHz. The I2C controller supports the clock stretching
feature to enable slower devices to exercise flow control.
Both SCL and SDA signals of the I2C interface require external
pull-up resistors. These resistors must be connected to VIO5.
UART Interface
The UART interface of SD2 supports full-duplex communication.
It includes the signals noted in Table 1.
Table 1. UART Interface Signals
Signal
TX
RX
CTS
RTS
Description
Output signal
Input signal
Flow control
Flow control
The UART is capable of generating a range of baud rates, from
300 bps to 4608 Kbps, selectable by the firmware. If flow control
is enabled, then SD2’s UART only transmits data when the CTS
input is asserted. In addition to this, SD2’s UART asserts the
RTS output signal, when it is ready to receive data.
I2S Interface
SD2 has an I2S port to support external audio codec devices.
SD2 functions as I2S Master as transmitter only. The I2S
interface consists of four signals: clock line (I2S_CLK), serial
data line (I2S_SD), word select line (I2S_WS), and master
system clock (I2S_MCLK). SD2 can generate the system clock
as an output on I2S_MCLK or accept an external system clock
input on I2S_MCLK.
Document Number: 001-87710 Rev. *A
Page 3 of 27
CYUSB202X
The sampling frequencies supported by the I2S interface are
32 kHz, 44.1 kHz, and 48 kHz.
Clock inputs to SD2 must meet the phase noise and jitter requirements specified in Table 4.
SPI Interface
The input clock frequency is independent of the clock/data rate
of SD2 core or any of the device interfaces. The internal PLL
applies the appropriate clock multiply option depending on the
input frequency.
SD2 supports an SPI Master interface on the Serial Peripherals
port. The maximum operation frequency is 33 MHz.
The SPI controller supports four modes of SPI communication
(see SPI Timing Specification on page 18 for details on the
modes) with the Start-Stop clock. This controller is a
single-master controller with a single automated SSN control. It
supports transaction sizes ranging from 4 bits to 32 bits.
Table 3. Crystal/Clock Frequency Selection
FSLC[2]
FSLC[1]
FSLC[0]
Crystal/Clock
Frequency
0
0
0
19.2-MHz crystal
Boot Options
1
0
0
19.2-MHz input CLK
SD2 can load boot images from various sources, selected by the
configuration of the PMODE pins. The boot options for the SD2
are as follows:
1
0
1
26-MHz input CLK
1
1
0
38.4-MHz input CLK
1
1
1
52-MHz input CLK
■
Boot from USB
■
Boot from I2C
■
Boot from eMMC on S0-Port
■
Boot from SPI
Table 4. Input Clock Specifications for SD2
Table 2. Booting Options for SD2
PMODE[2:0][1]
FF0
FF1
FFF
0FF
0F1
Boot From
S0-Port: eMMC
On failure, USB boot enabled
USB Boot
I2C
On Failure, USB Boot is enabled
I2C only
SPI
On Failure, USB Boot is enabled
Reset
A reset is initiated by asserting the Reset# pin on SD2. The
specific reset sequence and timing requirements are detailed in
Figure 3 on page 15 and Table 13 on page 22. All I/Os are
tristated during a hard reset.
Clocking
SD2 allows either a crystal to be connected between the XTALIN
and XTALOUT pins or an external clock to be connected at the
CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins
can be left unconnected if not used.
Crystal frequency supported is 19.2 MHz, while the external
clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.
SD2 has an on-chip oscillator circuit that uses an external
19.2 MHz (±100 ppm) crystal (when the crystal option is used).
An appropriate load capacitance is required with a crystal. Refer
to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured
appropriately to select the crystal option/clock frequency option.
The configuration options are shown in Table 3.
Parameter
Phase noise
Description
Specification
Units
Min
Max
100-Hz offset
–
–75
dB
1-kHz offset
–
–104
dB
10-kHz offset
–
–120
dB
100-kHz offset
–
–128
dB
1-MHz offset
–
–130
dB
Maximum frequency
deviation
–
150
ppm
Duty cycle
30
70
%
Overshoot
–
3
%
Undershoot
–
–3
%
Rise time/fall time
–
3
ns
32-kHz Watchdog Timer Clock Input
SD2 includes a watchdog timer that can be used to interrupt the
core, automatically wake up SD2 in Standby mode, and reset the
core. The watchdog timer runs off a 32-kHz clock, which may
optionally be supplied from an external source on a dedicated
pin of SD2.
The watchdog timer can be disabled by firmware.
Requirements for the optional 32-kHZ clock input are listed in
Table 4.
Table 5. 32-kHz Clock Input Requirements
Parameter
Min
Max
Units
40
60
%
Frequency deviation
–
±200
ppm
Rise Time/fall Time
–
200
ns
Duty cycle
Note
1. F indicates Floating.
Document Number: 001-87710 Rev. *A
Page 4 of 27
CYUSB202X
Power
Power Modes
SD2 has the following main groups of power supply domains:
SD2 supports the following power modes:
■
IO_VDDQ: This refers to a group of independent supply
domains for digital I/Os. The voltage level on these supplies
are 1.8 V to 3.3 V. SD2 provides six independent supply
domains for digital I/Os listed as follows:
❐ VIO2: S0-Port (for SD/MMC) I/O Power Supply Domain
❐ VIO3: S1-Port (for SD/MMC) I/O Power Supply Domain
❐ VIO1: S2-Port (GPIO) Power Supply Domain
❐ VIO4: S1-Port GPIO[53:57]/O Power Supply Domain (these
pins support MMC’s high nibble data line - D[7:4] on S1-Port)
❐ VIO5: I2C Power Supply Domain (supports 1.2 V to 3.3 V)
❐ CVDDQ: Clock Power Supply Domain
■
VDD: This is the supply voltage for the logic core. The nominal
supply voltage level is 1.2 V. This supplies the core logic
circuits. The same supply must also be used for the following:
❐ AVDD: This is the 1.2-V supply for the PLL, crystal oscillator
and other core analog circuits
■
VBATT/VBUS: This is the 3.2-V to 6-V battery power supply
for the USB I/O and analog circuits. This supply powers the
USB transceiver through SD2’s internal voltage regulator.
VBATT is internally regulated to 3.3 V.
■
Normal mode: This is the full-functional operating mode. In this
mode the internal CPU clock and the internal PLLs are enabled.
Normal operating power consumption does not exceed the sum
of ICC_CORE max and ICC_USB max (see Table 8 on page 12
for current consumption specifications).
The I/O power supplies (VIO2, VIO3, VIO4, and VIO5) may be
turned off when the corresponding interface is not in use.
S2VDDQ cannot be turned off at any time if the S2-Port is used
in the application.
■
SD2 supports four low-power modes (see Table 6 on page 5):
❐ Suspend mode with USB 2.0 PHY enabled (L1 mode)
❐ Suspend mode with USB 2.0 PHY disabled (L2 mode)
❐ Standby mode (L3 mode)
❐ Core power-down mode (L4 mode)
Table 6. Entry and Exit Methods for Low-Power Modes
Low Power Mode
Suspend mode with
USB 2.0 PHY
Enabled (L1 mode)
Characteristics
■
The power consumption in this
mode does not exceed ISB1
■
USB 2.0 PHY is enabled and is in
U3 mode (one of the suspend
modes defined by the USB 3.0
specification). This one block
alone operates with its internal
clock while all other clocks are
shut down
■
All I/Os maintain their previous
state
■
Power supply for the wakeup
source and core power must be
retained. All other power domains
can be turned on/off individually
■
The states of the configuration
registers, buffer memory and all
internal RAM are maintained
■
All transactions must be
completed before SD2 enters
Suspend mode (state of
outstanding transactions are not
preserved)
■
The firmware resumes operation
from where it was suspended
(except when woken up by
RESET# assertion) because the
program counter does not reset
Document Number: 001-87710 Rev. *A
Methods of Entry
■
Firmware executing on the core can
put SD2 into suspend mode. For
example, on USB suspend
condition, firmware may decide to
put SD2 into suspend mode
Methods of Exit
■
D+ transitioning to low or high
■
D– transitioning to low or high
■
Resume condition on SSRX +/-
■
Detection of VBUS
■
Assertion of GPIO[17]
■
Assertion of RESET#
Page 5 of 27
CYUSB202X
Table 6. Entry and Exit Methods for Low-Power Modes (continued)
Low Power Mode
Suspend mode with
USB 2.0 PHY
disabled (L2 mode)
Characteristics
■
The power consumption in this
mode does not exceed ISB2
■
USB 2.0 PHY is disabled and the
USB interface is in suspend mode
■
The clocks are shut off. The PLLs
are disabled
■
All I/Os maintain their previous
state
■
USB interface maintains the
previous state
■
Power supply for the wakeup
source and core power must be
retained. All other power domains
can be turned on/off individually
■
The states of the configuration
registers, buffer memory, and all
internal RAM are maintained
■
All transactions must be
completed before SD2 enters
Suspend mode (state of
outstanding transactions are not
preserved)
■
The firmware resumes operation
from where it was suspended
(except when woken up by
RESET# assertion) because the
program counter does not reset
Document Number: 001-87710 Rev. *A
Methods of Entry
■
Firmware executing on the core can
put SD2 into suspend mode. For
example, on USB suspend
condition, firmware may decide to
put SD2 into suspend mode
Methods of Exit
■
D+ transitioning to low or high
■
D– transitioning to low or high
■
Resume condition on SSRX +/-
■
Detection of VBUS
■
Assertion of GPIO[17]
■
Assertion of RESET#
Page 6 of 27
CYUSB202X
Table 6. Entry and Exit Methods for Low-Power Modes (continued)
Low Power Mode
Standby Mode (L3
mode)
Core Power Down
Mode (L4 mode)
Characteristics
■
The power consumption in this
mode does not exceed ISB3
■
All configuration register settings
and program/data RAM contents
are preserved. However, data in
the buffers or other parts of the
data path, if any, is not
guaranteed. Therefore, the
external processor should take
care that needed data is read
before putting SD2 into this
Standby Mode
■
The program counter is reset
after waking up from Standby
■
GPIO pins maintain their
configuration
■
Crystal oscillator is turned off
■
Internal PLL is turned off
■
USB transceiver is turned off
■
Core is powered down. Upon
wakeup, the core re-starts and
runs the program stored in the
program/data RAM
■
Power supply for the wakeup
source and core power must be
retained. All other power domains
can be turned on/off individually
■
The power consumption in this
mode does not exceed ISB4
■
Core power is turned off
■
All buffer memory, configuration
registers and the program RAM
do not maintain state. It is
necessary to reload the firmware
on exiting from this mode
■
In this mode, all other power
domains can be turned on/off
individually
Document Number: 001-87710 Rev. *A
Methods of Entry
■
■
Firmware executing on the core or
external processor configures the
appropriate register
Turn off VDD
Methods of Exit
■
Detection of VBUS
■
Assertion of GPIO[17]
■
Assertion of RESET#
■
Reapply VDD
■
Assertion of RESET#
Page 7 of 27
CYUSB202X
Configuration Fuse
EMI
Fuse options are available for specific usage models. Contact
Cypress Applications/Marketing for details.
SD2 meets EMI requirements outlined by FCC 15B (USA) and
EN55022 (Europe) for consumer electronics. SD2 can tolerate
reasonable EMI, conducted by aggressor, outlined by these
specifications and continue to function as expected.
Digital I/Os
SD2 provides firmware controlled pull-up or pull-down resistors
internally on all digital I/O pins. The pins can be pulled high
through an internal 50-k resistor or can be pulled low through
an internal 10-k resistor to prevent the pins from floating. The
I/O pins may have the following states:
■
Tristated (High-Z)
■
Weak pull-up (through internal 50 k)
■
Pull down (through internal 10 k)
■
Hold (I/O hold its value) when in low power modes
All unused I/Os should be pulled high by using the internal
pull-up resistors. All unused outputs should be left floating. All
I/Os can be driven at full-strength, three-quarter strength,
half-strength, or quarter-strength. These drive strengths are
configured based on each interface.
System Level ESD
SD2 has built-in ESD protection on the D+, D–, GND pins on the
USB interface. The ESD protection levels provided on these
ports are:
■
±2.2-KV human body model (HBM) based on JESD22-A114
Specification
■
±6-KV contact discharge and ±8-KV air gap discharge based
on IEC61000-4-2 level 3A
■
±8-KV contact discharge and ±15-KV air gap discharge based
on IEC61000-4-2 level 4C.
This protection ensures the device continues to function after
ESD events up to the levels stated.
The S0/S1_INS have up to ±2.2 KV HBM internal ESD
protection.
Pinout for BGA
Figure 2. SD2 BGA Ball Map (Top View)
A
1
2
3
4
5
6
7
8
9
10
11
U3VSSQ
U3RXVDDQ
SSRXM
SSRXP
SSTXP
SSTXM
AVDD
VSS
DP
DM
NC
B
VIO4
FSLC[0]
R_USB3
FSLC[1]
U3TXVDDQ
CVDDQ
A V SS
V SS
VSS
V DD
NC
C
GPIO[54]
GPIO[55]
VDD
GPIO[57]
RESET#
XTALIN
XTALOUT
R_USB2
OTG_ID
NC
VIO5
D
GPIO[50]
GPIO[51]
GPIO[52]
GPIO[53]
GPIO[56]
CLKIN_32
CLKIN
VSS
I2C_GPIO[58]
I2C_GPIO[59]
O[60]
E
GPIO[47]
VSS
S1VDDQ
GPIO[49]
GPIO[48]
FSLC[2]
NC
NC
VDD
V BATT
V BUS
VDD
F
S0VDDQ
GPIO[45]
GPIO[44]
GPIO[41]
GPIO[46]
NC
GPIO[2]
GPIO[5]
GPIO[1]
GPIO[0]
G
VSS
GPIO[42]
GPIO[43]
GPIO[30]
GPIO[25]
GPIO[22]
GPIO[21]
GPIO[15]
GPIO[4]
GPIO[3]
VSS
H
VDD
GPIO[39]
GPIO[40]
GPIO[31]
GPIO[29]
GPIO[26]
GPIO[20]
GPIO[24]
GPIO[7]
GPIO[6]
S2VDDQ
J
GPIO[38]
GPIO[36]
GPIO[37]
GPIO[34]
GPIO[28]
GPIO[16]
GPIO[19]
GPIO[14]
GPIO[9]
GPIO[8]
VDD
K
GPIO[35]
GPIO[33]
VSS
VSS
GPIO[27]
GPIO[23]
GPIO[18]
GPIO[17]
GPIO[13]
GPIO[12]
GPIO[10]
L
VSS
VSS
VSS
GPIO[32]
VDD
VSS
VDD
NC
S2VDDQ
GPIO[11]
VSS
Document Number: 001-87710 Rev. *A
Page 8 of 27
CYUSB202X
Pin Description for BGA
Table 7. Pin List
Pin
No.
Power
Domain
I/O
Name
F10
VI01
I/O
GPIO[0]
GPIO
F9
VI01
I/O
GPIO[1]
GPIO
F7
VI01
I/O
GPIO[2]
GPIO
Description
S2-PORT (GPIO)
G10
VI01
I/O
GPIO[3]
GPIO
G9
VI01
I/O
GPIO[4]
GPIO
F8
VI01
I/O
GPIO[5]
GPIO
H10
VI01
I/O
GPIO[6]
GPIO
H9
VI01
I/O
GPIO[7]
GPIO
J10
VI01
I/O
GPIO[8]
GPIO
J9
VI01
I/O
GPIO[9]
GPIO
K11
VI01
I/O
GPIO[10]
GPIO
L10
VI01
I/O
GPIO[11]
GPIO
K10
VI01
I/O
GPIO[12]
GPIO
K9
VI01
I/O
GPIO[13]
GPIO
J8
VI01
I/O
GPIO[14]
GPIO
GPIO
G8
VI01
I/O
GPIO[15]
J6
VI01
I/O
GPIO[16]
GPIO
K8
VI01
I/O
GPIO[17]
GPIO
K7
VI01
I/O
GPIO[18]
GPIO
J7
VI01
I/O
GPIO[19]
GPIO
H7
VI01
I/O
GPIO[20]
GPIO
G7
VI01
I/O
GPIO[21]
GPIO
G6
VI01
I/O
GPIO[22]
GPIO
GPIO
K6
VI01
I/O
GPIO[23]
H8
VI01
I/O
GPIO[24]
GPIO
G5
VI01
I/O
GPIO[25]
GPIO
H6
VI01
I/O
GPIO[26]
GPIO
GPIO
K5
VI01
I/O
GPIO[27]
J5
VI01
I/O
GPIO[28]
GPIO
H5
VI01
I/O
GPIO[29]
GPIO
G4
VI01
I/O
GPIO[30]
PMODE[0]
H4
VI01
I/O
GPIO[31]
PMODE[1]
L4
VI01
I/O
GPIO[32]
PMODE[2]
NC
No Connect
CVDDQ
I
RESET#
Active Low. Hardware Reset.
L8
C5
8b MMC
Configuration
SD+GPIO
Configuration
GPIO
Configuration
GPIO
K2
VI02
I/O
GPIO[33]
S0_SD0
S0_SD0
J4
VI02
I/O
GPIO[34]
S0_SD1
S0_SD1
GPIO
K1
VI02
I/O
GPIO[35]
S0_SD2
S0_SD2
GPIO
J2
VI02
I/O
GPIO[36]
S0_SD3
S0_SD3
GPIO
J3
VI02
I/O
GPIO[37]
S0_SD4
GPIO
GPIO
J1
VI02
I/O
GPIO[38]
S0_SD5
GPIO
GPIO
Document Number: 001-87710 Rev. *A
Page 9 of 27
CYUSB202X
Table 7. Pin List (continued)
Pin
No.
Power
Domain
I/O
Name
H2
VI02
I/O
GPIO[39]
H3
VI02
I/O
GPIO[40]
F4
VI02
I/O
GPIO[41]
G2
VI02
I/O
GPIO[42]
G3
VI02
I/O
GPIO[43]
Description
S0_SD6
GPIO
GPIO
S0_SD7
GPIO
GPIO
S0_CMD
S0_CMD
GPIO
S0_CLK
S0_CLK
GPIO
S0_WP
S0_WP
GPIO
F3
VI02
I/O
GPIO[44]
S0S1_INS
S0S1_INS
GPIO
F2
VI02
I/O
GPIO[45]
MMC0_RST_OUT
GPIO
GPIO
8b MMC
SD+UART
SD+SPI
SD+GPIO GPIO
GPIO+
UART+I2S
SD+I2S
UART+SPI+
I2S
F5
VI03
I/O
GPIO[46]
S1_SD0
S1_SD0
S1_SD0
S1_SD0 GPIO
GPIO
S1_SD0
UART_RTS
E1
VI03
I/O
GPIO[47]
S1_SD1
S1_SD1
S1_SD1
S1_SD1 GPIO
GPIO
S1_SD1
UART_CTS
E5
VI03
I/O
GPIO[48]
S1_SD2
S1_SD2
S1_SD2
S1_SD2 GPIO
GPIO
S1_SD2
UART_TX
E4
VI03
I/O
GPIO[49]
S1_SD3
S1_SD3
S1_SD3
S1_SD3 GPIO
GPIO
S1_SD3
UART_RX
D1
VI03
I/O
GPIO[50]
S1_CMD
S1_CMD
S1_CMD
S1_CMD GPIO
I2S_CLK
S1_CMD
I2S_CLK
D2
VI03
I/O
GPIO[51]
S1_CLK
S1_CLK
S1_CLK
S1_CLK GPIO
I2S_SD
S1_CLK
I2S_SD
D3
VI03
I/O
GPIO[52]
S1_WP
S1_WP
S1_WP
S1_WP
I2S_WS
S1_WP
I2S_WS
D4
VIO4
I/O
GPIO[53]
S1_SD4
UART_RTS
SPI_SCK
GPIO
GPIO UART_RTS
GPIO
SPI_SCK
C1
VIO4
I/O
GPIO[54]
S1_SD5
UART_CTS
SPI_SSN
GPIO
GPIO UART_CTS
I2S_CLK
SPI_SSN
C2
VIO4
I/O
GPIO[55]
S1_SD6
UART_TX
SPI_MISO
GPIO
GPIO
UART_TX
I2S_SD
SPI_MISO
D5
VIO4
I/O
GPIO[56]
S1_SD7
UART_RX
SPI_MOSI
GPIO
GPIO
UART_RX
I2S_WS
SPI_MOSI
C4
VIO4
I/O
GPIO[57]
MMC1_RST_OUT
GPIO
GPIO
GPIO
GPIO
I2S_MCLK
I2S_MCLK
I2S_MCLK
C9
GPIO
NC
No Connect
A3
NC
USB 3.0 SuperSpeed Receive Minus
A4
NC
USB 3.0 SuperSpeed Receive Plus
A6
NC
USB 3.0 SuperSpeed Transmit Minus
A5
NC
USB 3.0 SuperSpeed Transmit Plus
A9
VBATT/
VBUS
I/O
D+
USB (HS/FS) Data Plus
A10
VBATT/
VBUS
I/O
D-
USB (HS/FS) Data Minus
NC
No Connect
FSLC[0]
A11
B2
CVDDQ
I
FSLC[0]
C6
AVDD
I/O
XTALIN
XTALIN
C7
AVDD
I/O
XTALOUT
XTALOUT
B4
CVDDQ
I
FSLC[1]
FSLC[1]
FSLC[2]
E6
CVDDQ
I
FSLC[2]
D7
CVDDQ
I
CLKIN
CLKIN
D6
CVDDQ
I
CLKIN_32
CLKIN_32
D9
VIO5
I/O
I2C_GPIO[58]
SCL (Serial Clock) for I2C Bus Interface
D10
VIO5
I/O
2
I C_GPIO[59]
SDA (Serial Data) for I2C Bus Interface
No Connect
E7
NC
C10
NC
No Connect
B11
NC
No Connect
E8
NC
No Connect
F6
NC
No Connect
O[60]
Output only
D11
VIO5
O
Document Number: 001-87710 Rev. *A
Page 10 of 27
CYUSB202X
Table 7. Pin List (continued)
Pin
No.
Power
Domain
I/O
Name
PWR
VBATT
B10
PWR
VDD
A1
PWR
VSS
E11
PWR
VBUS
D8
PWR
VSS
H11
PWR
VIO1
E2
PWR
VSS
L9
PWR
VIO1
G1
PWR
VSS
VIO2
E10
F1
PWR
G11
PWR
VSS
E3
PWR
VIO3
L1
PWR
VSS
B1
PWR
VIO4
L6
PWR
VSS
B6
PWR
CVDDQ
B5
Description
NC
A2
NC
C11
PWR
VIO5
L11
PWR
VSS
A7
PWR
AVDD
B7
PWR
AVSS
C3
PWR
VDD
B8
PWR
VSS
E9
PWR
VDD
B9
PWR
VSS
F11
PWR
VDD
H1
PWR
VDD
L7
PWR
VDD
J11
PWR
VDD
L5
PWR
VDD
K4
PWR
VSS
L3
PWR
VSS
K3
PWR
VSS
L2
PWR
VSS
A8
PWR
VSS
Precision Resistors
C8
B3
VBUS/
VBATT
I/O
R_usb2
Precision resistor for USB 2.0 (Connect a 6.04 k+/-1% resistor between this pin and GND)
NC
Precision resistor for USB 3.0 (Connect a 200 +/-1% resistor between this pin and GND)
Document Number: 001-87710 Rev. *A
Page 11 of 27
CYUSB202X
AC Timing Parameters
Storage Port Timing
The S0-Port and S1-Port support the MMC Specification Version 4.4 and SD Specification Version 2.0. Table 7 lists the timing
parameters for S0-Port and S1-Port of SD2.
Table 8. S-Port Timing Parameters[2]
Parameter
Description
Min
Max
Units
MMC-20
tSDIS CMD
Host input setup time for CMD
4.8
–
ns
tSDIS DAT
Host input setup time for DAT
4.8
–
ns
tSDIH CMD
Host input hold time for CMD
4.4
–
ns
tSDIH DAT
Host input hold time for DAT
4.4
–
ns
tSDOS CMD
Host output setup time for CMD
5
–
ns
tSDOS DAT
Host output setup time for DAT
5
–
ns
tSDOH CMD
Host output hold time for CMD
5
–
ns
tSDOH DAT
Host output hold time for DAT
5
–
ns
tSCLKR
Clock rise time
–
2
ns
tSCLKF
Clock fall time
–
2
ns
tSDCK
Clock cycle time
50
–
ns
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
20
MHz
40
60
%
Host input setup time for CMD
10
–
ns
tSDIS DAT
Host input setup time for DAT
10
–
ns
tSDIH CMD
Host input hold time for CMD
9
–
ns
tSDIH DAT
Host input hold time for DAT
9
–
ns
tSDOS CMD
Host output setup time for CMD
3
–
ns
MMC-26
tSDOS DAT
Host output setup time for DAT
3
–
ns
tSDOH CMD
Host output hold time for CMD
3
–
ns
tSDOH DAT
Host output hold time for DAT
3
–
ns
tSCLKR
Clock rise time
–
2
ns
tSCLKF
Clock fall time
tSDCK
Clock cycle time
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
–
2
ns
38.5
–
ns
26
MHz
40
60
%
Host input setup time for CMD
4
–
ns
tSDIS DAT
Host input setup time for DAT
4
–
ns
tSDIH CMD
Host input hold time for CMD
3
–
ns
tSDIH DAT
Host input hold time for DAT
3
–
ns
tSDOS CMD
Host output setup time for CMD
3
–
ns
MC-HS
tSDOS DAT
Host output setup time for DAT
3
–
ns
tSDOH CMD
Host output hold time for CMD
3
–
ns
tSDOH DAT
Host output hold time for DAT
3
–
ns
Document Number: 001-87710 Rev. *A
Page 12 of 27
CYUSB202X
Table 8. S-Port Timing Parameters[2] (continued)
Parameter
tSCLKR
Description
Clock rise time
tSCLKF
Clock fall time
tSDCK
Clock cycle time
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
Host input setup time for CMD
tSDIS DAT
tSDIH CMD
Min
Max
Units
–
2
ns
–
2
ns
19.2
–
ns
–
52
MHz
40
60
%
4
–
ns
Host input setup time for DAT
0.56
–
ns
Host input hold time for CMD
3
–
ns
tSDIH DAT
Host input hold time for DAT
2.58
–
ns
tSDOS CMD
Host output setup time for CMD
3
–
ns
tSDOS DAT
Host output setup time for DAT
2.5
–
ns
tSDOH CMD
Host output hold time for CMD
3
–
ns
tSDOH DAT
Host output hold time for DAT
2.5
–
ns
tSCLKR
Clock rise time
–
2
ns
MMC-DDR52
tSCLKF
Clock fall time
tSDCK
Clock cycle time
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
Host input setup time for CMD
tSDIS DAT
tSDIH CMD
–
2
ns
19.2
–
ns
52
MHz
45
55
%
24
–
ns
Host input setup time for DAT
24
–
ns
Host input hold time for CMD
2.5
–
ns
tSDIH DAT
Host input hold time for DAT
2.5
–
ns
tSDOS CMD
Host output setup time for CMD
5
–
ns
SD-Default Speed (SDR12)
tSDOS DAT
Host output setup time for DAT
5
–
ns
tSDOH CMD
Host output hold time for CMD
5
–
ns
tSDOH DAT
Host output hold time for DAT
5
–
ns
tSCLKR
Clock rise time
–
2
ns
tSCLKF
Clock fall time
–
2
ns
tSDCK
Clock cycle time
40
–
ns
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
Host input setup time for CMD
tSDIS DAT
tSDIH CMD
25
MHz
40
60
%
4
–
ns
Host input setup time for DAT
4
–
ns
Host input hold time for CMD
2.5
–
ns
tSDIH DAT
Host input hold time for DAT
2.5
–
ns
tSDOS CMD
Host output setup time for CMD
6
–
ns
SD-High-Speed(SDR25)
tSDOS DAT
Host output setup time for DAT
6
–
ns
tSDOH CMD
Host output hold time for CMD
2
–
ns
tSDOH DAT
Host output hold time for DAT
2
–
ns
Document Number: 001-87710 Rev. *A
Page 13 of 27
CYUSB202X
Table 8. S-Port Timing Parameters[2] (continued)
Parameter
tSCLKR
Description
Clock rise time
Min
Max
Units
–
2
ns
tSCLKF
Clock fall time
–
2
ns
tSDCK
Clock cycle time
20
–
ns
SDFREQ
Clock frequency
–
50
MHz
tSDCLKOD
Clock duty cycle
40
60
%
tSDIS CMD
Host input setup time for CMD
1.5
–
ns
tSDIS DAT
Host input setup time for DAT
1.5
–
ns
tSDIH CMD
Host input hold time for CMD
2.5
–
ns
tSDIH DAT
Host input hold time for DAT
2.5
–
ns
tSDOS CMD
Host output setup time for CMD
3
–
ns
SD-SDR50
tSDOS DAT
Host output setup time for DAT
3
–
ns
tSDOH CMD
Host output hold time for CMD
0.8
–
ns
tSDOH DAT
Host output hold time for DAT
0.8
–
ns
tSCLKR
Clock rise time
–
2
ns
tSCLKF
Clock fall time
–
2
ns
tSDCK
Clock cycle time
10
–
ns
SDFREQ
Clock frequency
tSDCLKOD
Clock duty cycle
tSDIS CMD
100
MHz
40
60
%
Host input setup time for CMD
4
–
ns
tSDIS DAT
Host input setup time for DAT
0.92
–
ns
tSDIH CMD
Host input hold time for CMD
2.5
–
ns
tSDIH DAT
Host input hold time for DAT
2.5
–
ns
tSDOS CMD
Host output setup time for CMD
6
–
ns
SD-DDR50
tSDOS DAT
Host output setup time for DAT
3
–
ns
tSDOH CMD
Host output hold time for CMD
0.8
–
ns
tSDOH DAT
Host output hold time for DAT
0.8
–
ns
tSCLKR
Clock rise time
–
2
ns
tSCLKF
Clock fall time
–
2
ns
tSDCK
Clock cycle time
20
–
ns
SDFREQ
Clock frequency
50
MHz
tSDCLKOD
Clock duty cycle
55
%
45
Note
2. All parameters guaranteed by design and validated through characterization.
Document Number: 001-87710 Rev. *A
Page 14 of 27
CYUSB202X
I2C Interface Timing
I2C Timing
Figure 3. I2C Timing Definition
Table 9. I2C Timing Parameters[3]
Parameter
fSCL
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tr
tf
tSU:STO
tBUF
tVD:DAT
tVD:ACK
tSP
Description
I2C Standard Mode Parameters
SCL clock frequency
Hold time START condition
LOW period of the SCL
HIGH period of the SCL
Setup time for a repeated START condition
Data hold time
Data setup time
Rise time of both SDA and SCL signals
Fall time of both SDA and SCL signals
Setup time for STOP condition
Bus free time between a STOP and START condition
Data valid time
Data valid ACK
Pulse width of spikes that must be suppressed by input filter
Min
Max
Units
0
4
4.7
4
4.7
0
250
–
–
4
4.7
–
–
n/a
100
–
–
–
–
–
–
1000
300
–
–
3.45
3.45
n/a
kHz
µs
µs
µs
µs
µs
ns
ns
ns
µs
µs
µs
µs
Note
3. All parameters guaranteed by design and validated through characterization.
Document Number: 001-87710 Rev. *A
Page 15 of 27
CYUSB202X
Table 9. I2C Timing Parameters[3] (continued)
Parameter
fSCL
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tr
tf
tSU:STO
tBUF
tVD:DAT
tVD:ACK
tSP
fSCL
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tr
tf
tSU:STO
tBUF
tVD:DAT
tVD:ACK
tSP
Description
I2C Fast Mode Parameters
Min
Max
Units
SCL clock frequency
0
Hold time START condition
0.6
LOW period of the SCL
1.3
HIGH period of the SCL
0.6
Setup time for a repeated START condition
0.6
Data hold time
0
Data setup time
100
Rise time of both SDA and SCL signals
–
Fall time of both SDA and SCL signals
–
Setup time for STOP condition
0.6
Bus-free time between a STOP and START condition
1.3
Data valid time
–
Data valid ACK
–
Pulse width of spikes that must be suppressed by input filter
0
I2C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2V)
SCL clock frequency
0
Hold time START condition
0.26
LOW period of the SCL
0.5
HIGH period of the SCL
0.26
Setup time for a repeated START condition
0.26
Data hold time
0
Data setup time
50
Rise time of both SDA and SCL signals
–
Fall time of both SDA and SCL signals
–
Setup time for STOP condition
0.26
Bus free time between a STOP and START condition
0.5
Data valid time
–
Data valid ACK
–
Pulse width of spikes that must be suppressed by input filter
0
400
–
–
–
–
–
–
300
300
–
–
0.9
0.9
50
kHz
µs
µs
µs
µs
µs
ns
ns
ns
µs
µs
µs
µs
ns
1000
–
–
–
–
–
–
120
120
–
–
0.45
0.55
50
kHz
µs
µs
µs
µs
µs
µs
ns
ns
µs
µs
µs
µs
ns
Document Number: 001-87710 Rev. *A
Page 16 of 27
CYUSB202X
I2S Timing Diagram
Figure 4. I2S Transmit Cycle
tT
tTR
tTF
tTL
tTH
SCK
tThd
SA,
WS (output)
tTd
Table 10. I2S Timing Parameters[4]
Parameter
tT
Description
I2S
2S
transmitter clock cycle
Min
Max
Units
Ttr
–
ns
tTL
I
transmitter cycle LOW period
0.35 Ttr
–
ns
tTH
I2S transmitter cycle HIGH period
0.35 Ttr
–
ns
tTR
I2S transmitter rise time
–
0.15 Ttr
ns
0.15 Ttr
ns
I
2S
transmitter fall time
–
tThd
I
2S
transmitter data hold time
0
–
ns
tTd
I2S transmitter delay time
–
0.8tT
ns
tTF
Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz).
Note
4. All parameters guaranteed by design and validated through characterization.
Document Number: 001-87710 Rev. *A
Page 17 of 27
CYUSB202X
SPI Timing Specification
Figure 5. SPI Timing
SSN
(output)
tlead
SCK
(CPOL=0,
Output)
tsdi
MISO
(input)
twsck
thoi
MSB
LSB
td
tsdd
tdis
tdi
v
MOSI
(output)
tlag
trf
twsck
SCK
(CPOL=1,
Output)
tssnh
tsck
LSB
MSB
SPI Master Timing for CPHA = 0
SSN
(output)
SCK
(CPOL=0,
Output)
tssnh
tsck
tlead
twsck
trf
tlag
twsck
SCK
(CPOL=1,
Output)
tsdi
MISO
(input)
thoi
LSB
tdis
tdi
tdv
MOSI
(output)
MSB
LSB
MSB
SPI Master Timing for CPHA = 1
Document Number: 001-87710 Rev. *A
Page 18 of 27
CYUSB202X
Table 11. SPI Timing Parameters[5]
Min
Max
Units
fop
Parameter
Operating frequency
Description
0
33
MHz
tsck
Cycle time
30
–
ns
twsck
Clock high/low time
13.5
–
[6]
1.5 tsck + 5
ns
0.5
1.5 tsck[6]+5
ns
Rise/fall time
–
8
ns
tsdd
Output SSN to valid data delay time
–
5
ns
tdv
Output data valid time
–
5
ns
tdi
Output data invalid
0
–
ns
tssnh
Minimum SSN high time
10
–
ns
tsdi
Data setup time input
8
–
ns
thoi
Data hold time input
0
–
ns
tdis
Disable data output on SSN high
0
–
ns
tlead
SSN-SCK lead time
tlag
Enable lag time
trf
1/2 tsck
-5
ns
[6]
Notes
5. All parameters guaranteed by design and validated through characterization.
6. Depends on LAG and LEAD setting in the SPI_CONFIG register.
Document Number: 001-87710 Rev. *A
Page 19 of 27
CYUSB202X
Absolute Maximum Ratings
■
Exceeding maximum ratings may shorten the useful life of the
device.
Latch-up current ........................................................ > 200 mA
Storage temperature .................................... –65 °C to +150 °C
±6-KV contact discharge, ±8-KV air gap discharge based on
IEC61000-4-2 level 3A, ±8-KV contact discharge, and ±15-KV
air gap discharge based on IEC61000-4-2 level 4C
Maximum output short circuit current
for all I/O configurations. (Vout = 0 V) ........................ –100 mA
Ambient temperature with
power supplied (Industrial) ............................ –40 °C to +85 °C
Operating Conditions
Supply voltage to ground potential
VDD, AVDDQ ..................................................................... 1.25 V
TA (ambient temperature under bias)
Industrial ........................................................ –40 °C to +85 °C
S2VDDQ,S1VDDQ, S0VDDQ, VIO4, VIO5 .............................. 3.6 V
U3TXVDDQ, U3RXVDDQ .................................................. 1.25 V
VDD, AVDDQ, U3TXVDDQ, U3RXVDDQ
supply voltage .................................................. 1.15 V to 1.25 V
DC input voltage to any input pin .............................. VCC + 0.3
VBATT supply voltage .............................................. 3.2 V to 6 V
DC voltage applied to
outputs in High Z State ............................................. VCC + 0.3
S2VDDQ, S1VDDQ, S0VDDQ, VIO4, CVDDQ
supply voltage ...................................................... 1.7 V to 3.6 V
(VCC is the corresponding I/O voltage)
VIO5 supply voltage ............................................ 1.15 V to 3.6 V
Static discharge voltage ESD protection levels:
■
±2.2-KV human body model (HBM) based on JESD22-A114
■
Additional ESD Protection levels on D+, D–, VBUS, GND pins
U-port and GPIO pins LPP-Port
DC Specifications
Table 12. DC Specifications
Parameter
VDD
AVDD
VIO2
VIO3
VIO1
VIO4
VBATT
VBUS
CVDDQ
VIO5
Description
Core voltage supply
Analog voltage supply
SD/ MMC/ CF I/O power supply domain
SD/MMC I/O power supply domain
GPIO/ CF I/O power supply domain
GPIO/ I/O power supply domain
USB voltage supply
USB voltage supply
Clock voltage supply
I2C voltage supply
Min
1.15
1.15
1.7
1.7
1.7
1.7
3.2
4.0
1.7
1.2
Max
1.25
1.25
3.6
3.6
3.6
3.6
6
6
3.6
3.3
Units
V
V
V
V
V
V
V
V
V
V
VIH1
Input HIGH voltage 1
0.625 × VCC
VCC + 0.3
V
VIH2
Input HIGH voltage 2
VCC - 0.4
VCC + 0.3
V
VIL
Input LOW voltage
–0.3
0.25 × VCC
V
VCC is the corresponding I/O
voltage supply.
VOH
Output HIGH voltage
0.9 × VCC
–
V
IOH (max) = –100 µA tested at
quarter drive strength. VCC is
the corresponding I/O voltage
supply.
VOL
Output LOW voltage
–
0.1 × VCC
V
IOL (min) = +100 µA tested at
quarter drive strength. VCC is
the corresponding I/O voltage
supply.
Document Number: 001-87710 Rev. *A
Notes
1.2-V typical
1.2-V typical
1.8-, 2.5-, and 3.3-V typical
1.8-, 2.5-, and 3.3-V typical
1.8-, 2.5-, and 3.3-V typical
1.8-, 2.5-, and 3.3-V typical
3.7-V typical
5-V typical
1.8-, 3.3-V typical
1.2-,1.8-, 2.5-, and 3.3-V
typical
For 2.0 V  VCC  3.6 V (except
USB port).VCC is the corresponding I/O voltage supply.
For 1.7 V  VCC 2.0 V
(except USB port). VCC is the
corresponding I/O voltage
supply.
Page 20 of 27
CYUSB202X
Table 12. DC Specifications (continued)
IIX
Parameter
Description
Input leakage current for all pins except
SSTXP/SSXM/SSRXP/SSRXM
Min
–1
Max
1
Units
µA
IOZ
Output High-Z leakage current for all pins
except SSTXP/SSXM/SSRXP/SSRXM
–1
1
µA
ICC Core
Core and Analog Voltage Operating
Current
–
150
mA
ICC USB
USB voltage supply operating current
Total suspend current during Suspend
Mode with USB 3.0 PHY enabled (L1
mode)
–
–
20
–
mA
mA
ISB2
Total suspend current during Suspend
Mode with USB 3.0 PHYdisabled (L2
mode)
–
–
mA
Core current: 250 uA
I/O current: 20 uA
USB current: 1.2 mA
For typical PVT (Typical
silicon, all power supplies at
their respective nominal levels
at 25 C.)
ISB3
Total Standby Current during Standby
Mode (L3 mode)
–
–
µA
Core current: 60 uA
I/O current: 20 uA
USB current: 40 uA
For typical PVT (Typical
silicon, all power supplies at
their respective nominal levels
at 25 C.)
ISB4
Total Standby Current during Core Power
Down Mode (L4 mode)
–
–
µA
Core current: 0 uA
I/O current: 20 uA
USB current: 40 uA
For typical PVT (Typical
silicon, all power supplies at
their respective nominal levels
at 25 C.)
VRAMP
Voltage Ramp Rate on Core and I/O
Supplies
Noise Level Permitted on VDD and I/O
Supplies
0.2
50
V/ms
–
100
mV
Voltage ramp must be
monotonic
Max p-p noise level permitted
on all supplies except AVDD
Noise Level Permitted on AVDD Supply
–
20
mV
ISB1
VN
VN_AVDD
Document Number: 001-87710 Rev. *A
Notes
All I/O signals held at VDDQ
(For I/Os that have a
pull-up/down resistor
connected, the leakage current
increases by VDDQ/Rpu or
VDDQ/RPD
All I/O signals held at VDDQ
Total current through AVDD,
VDD
Core current: 1.5 mA
I/O current: 20 uA
USB current: 2 mA
For typical PVT (Typical
silicon, all power supplies at
their respective nominal levels
at 25 C.)
Max p-p noise level permitted
on AVDD
Page 21 of 27
CYUSB202X
Reset Sequence
The hard reset sequence requirements for SD2 are specified in the following table.
Table 13. Reset and Standby Timing Parameters
Parameter
tRPW
Definition
Minimum RESET# pulse width
tRH
Minimum high on RESET#
tRR
Reset Recovery Time (after which Boot loader begins
firmware download)
tSBY
Time to enter Standby/Suspend (from the time
MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)
tWU
Time to wakeup from standby
tWH
Minimum time before Standby/Suspend source may
be reasserted
Conditions
Min (ms)
Max (ms)
Clock Input
1
–
Crystal Input
1
–
5
–
Clock Input
1
–
Crystal Input
5
–
1
Clock Input
1
–
Crystal Input
5
–
5
–
Figure 6. Reset Sequence
VDD
( core )
xVDDQ
XTALIN/
CLKIN
XTALIN/ CLKIN must be stable
before exiting Standby/Suspend
Mandatory
Reset Pulse
tRh
tRR
Hard Reset
RESET #
tWH
tRPW
Standby/
Suspend
Source
tSBY
Standby/Suspend source Is asserted
(MAIN_POWER_EN/ MAIN_CLK_EN bit
is set)
Document Number: 001-87710 Rev. *A
tWU
Standby/Suspend
source Is deasserted
Page 22 of 27
CYUSB202X
Package Diagram
Figure 7. 121-ball FBGA (10 × 10 × 1.20 mm) Package Outline, 001-54471
001-54471 *D
Document Number: 001-87710 Rev. *A
Page 23 of 27
CYUSB202X
Ordering Information
Table 14. Ordering Information
Ordering Code
SD/eMMC SDIO Ports
SRAM (KB)
Package Type
CYUSB2024-BZXI
2
512
121-ball BGA
CYUSB2025-BZXI
2
512
121-ball BGA
Ordering Code Definitions
CY USB
2 XXX
- BZ X
I
X
X = blank or T
blank = Tube; T = Tape and Reel
Temperature Range:
I = Industrial
Pb-free
Package Type:
BZ = 121-ball BGA
Marketing Part Number
Base Part Number for USB 2.0
Marketing Code: USB = USB Controller
Company ID: CY = Cypress
Document Number: 001-87710 Rev. *A
Page 24 of 27
CYUSB202X
Acronyms
Document Conventions
Acronym
Description
Units of Measure
ACA
accessory charger adaptor
BGA
ball grid array
°C
degree Celsius
MMC
multimedia card
µA
microamperes
PLL
phase locked loop
µs
microseconds
SD
secure digital
mA
milliamperes
SDIO
secure digital input / output
Mbps
Megabytes per second
SLC
single-level cell
MHz
mega hertz
USB
universal serial bus
ms
milliseconds
Document Number: 001-87710 Rev. *A
Symbol
Unit of Measure
ns
nanoseconds

ohms
pF
pico Farad
V
volts
Page 25 of 27
CYUSB202X
Document History Page
Document Title: CYUSB202X, SD2™ USB and Mass Storage Peripheral Controller
Document Number: 001-87710
Orig. of
Change
Submission
Date
4016299
GSZ
05/31/2013
New data sheet.
4114923
GSZ
09/05/2013
Changed status from “Company Confidential” to “Final”.
Revision
ECN
**
*A
Description of Change
Updated in new template.
Document Number: 001-87710 Rev. *A
Page 26 of 27
CYUSB202X
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
PSoC
Touch Sensing
cypress.com/go/memory
cypress.com/go/psoc
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
cypress.com/go/touch
USB Controllers
Wireless/RF
psoc.cypress.com/solutions
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-87710 Rev. *A
Revised September 5, 2013
Page 27 of 27
SD3™ is the trademark of Cypress Semiconductor Corporation. All other products and company names mentioned in this document may be the trademarks of their respective holders.